Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 1, Pages 22–46
DOI: https://doi.org/10.4213/tvp144
(Mi tvp144)
 

This article is cited in 24 scientific papers (total in 24 papers)

Branching processes in random environment and “bottlenecks” in evolution of populations

V. A. Vatutin, E. E. D'yakonova

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: A branching process $Z(n)$, $n=0,1\dots$ is considered which evolves in a random environment generated by a sequence of independent identically distributed generating functions $f_0(s),f_1(s),\dots$ . Let $S_0=0$, $S_0=0$, $S_k=\log f'_0(1)+\dots+\log f'_{k-1}(1)$, $k\ge 1$, be the associated random walk and let $\tau (n)$ be the leftmost point of minimum of $\{S_k\}_{k\ge 0}$ on the interval $[0,n]$. Assuming that the random walk satisfies the Spitzer condition $n^{-1}\sum_{k=1}^{n}P\{S_k>0\}\to\rho\in(0,1)$, $n\to\infty$, we show (under the quenched approach) that for each fixed $t\in (0,1]$ and $m=0,\pm 1,\pm 2\dots$ the distribution of $Z(\tau(nt)+m)$ given $Z(n)>0$ converges as $n\to\infty $ to a (random) discrete distribution. Thus, in contrast to fixed points of the form $nt$, where the size of the population is large (even exponentially large, see [V. A. Vatutin and E. E. Dyakonova, Theory Probab. Appl., 49 (2005), pp. 275–308]), the size of the population at (random) points of sequential minima of the associated random walk becomes drastically small and, therefore, the branching process passes through a number of bottlenecks at such moments. As a corollary of our results we find (under the quenched approach) the distribution of the local time of the first excursion of a simple random walk in a random environment, provided this excursion attains a high level.
Keywords: branching processes in a random environment, Spitzer condition, conditional limit theorems, change of measure, random walk in a random environment, local time.
Received: 07.07.2005
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 1, Pages 189–210
DOI: https://doi.org/10.1137/S0040585X97982177
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. A. Vatutin, E. E. D'yakonova, “Branching processes in random environment and “bottlenecks” in evolution of populations”, Teor. Veroyatnost. i Primenen., 51:1 (2006), 22–46; Theory Probab. Appl., 51:1 (2007), 189–210
Citation in format AMSBIB
\Bibitem{VatDya06}
\by V.~A.~Vatutin, E.~E.~D'yakonova
\paper Branching processes in random environment and ``bottlenecks'' in evolution of populations
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 1
\pages 22--46
\mathnet{http://mi.mathnet.ru/tvp144}
\crossref{https://doi.org/10.4213/tvp144}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2324164}
\zmath{https://zbmath.org/?q=an:1114.60085}
\elib{https://elibrary.ru/item.asp?id=9233587}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 1
\pages 189--210
\crossref{https://doi.org/10.1137/S0040585X97982177}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245677000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247494557}
Linking options:
  • https://www.mathnet.ru/eng/tvp144
  • https://doi.org/10.4213/tvp144
  • https://www.mathnet.ru/eng/tvp/v51/i1/p22
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024