Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 1, Pages 186–190
DOI: https://doi.org/10.4213/tvp14
(Mi tvp14)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Estimates for moduli of smoothness of distribution functions

J. A. Adell, A. Lekuona

University of Zaragoza
Full-text PDF (587 kB) Citations (1)
References:
Abstract: We give upper bounds for the usual moduli of smoothness of a distribution function $F$ in terms of its characteristic function $\varphi$. In particular, we complete some known estimates of the concentration function of $F$. Our approach uses a new version of the classical Berry–Esseen smoothing inequality.
Keywords: modulus of smoothness, concentration function, characteristic function, smoothing inequality.
Received: 22.11.2004
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 1, Pages 148–152
DOI: https://doi.org/10.1137/S0040585X97982918
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. A. Adell, A. Lekuona, “Estimates for moduli of smoothness of distribution functions”, Teor. Veroyatnost. i Primenen., 52:1 (2007), 186–190; Theory Probab. Appl., 52:1 (2008), 148–152
Citation in format AMSBIB
\Bibitem{AdeLek07}
\by J.~A.~Adell, A.~Lekuona
\paper Estimates for moduli of smoothness of distribution functions
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 1
\pages 186--190
\mathnet{http://mi.mathnet.ru/tvp14}
\crossref{https://doi.org/10.4213/tvp14}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354578}
\zmath{https://zbmath.org/?q=an:1147.60305}
\elib{https://elibrary.ru/item.asp?id=9466887}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 1
\pages 148--152
\crossref{https://doi.org/10.1137/S0040585X97982918}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254828600011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42549119018}
Linking options:
  • https://www.mathnet.ru/eng/tvp14
  • https://doi.org/10.4213/tvp14
  • https://www.mathnet.ru/eng/tvp/v52/i1/p186
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024