Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 4, Pages 797–806
DOI: https://doi.org/10.4213/tvp136
(Mi tvp136)
 

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

Discrete Bessel process and its properties

A. S. Mishchenko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: This paper considers a discrete analogue of a three-dimensional Bessel process — a certain discrete random process, which converges to a continuous Bessel process in the sense of the Donsker–Prokhorov invariance principle, and which has an elementary path structure such as in the case of a simple random walk.
The paper introduces four equivalent definitions of a discrete Bessel process, which describe this process from different points of view. The study of this process shows that its relationship to the simple random walk repeats the well-known properties which connect the continuous three-dimensional Bessel process with the standard Brownian motion. Thus, hereby we state and prove discrete versions of Pitman's theorem, Williams theorem on Brownian path decomposition, and some other statements related to these two processes.
Keywords: Bessel process, random walk, discrete analogues, Pitman theorem, Lévy theorem, Williams theorem.
Received: 17.08.2005
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 4, Pages 700–709
DOI: https://doi.org/10.1137/S0040585X97982098
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. S. Mishchenko, “Discrete Bessel process and its properties”, Teor. Veroyatnost. i Primenen., 50:4 (2005), 797–806; Theory Probab. Appl., 50:4 (2006), 700–709
Citation in format AMSBIB
\Bibitem{Mis05}
\by A.~S.~Mishchenko
\paper Discrete Bessel process and its properties
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 4
\pages 797--806
\mathnet{http://mi.mathnet.ru/tvp136}
\crossref{https://doi.org/10.4213/tvp136}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2331993}
\zmath{https://zbmath.org/?q=an:1116.60045}
\elib{https://elibrary.ru/item.asp?id=9157519}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 4
\pages 700--709
\crossref{https://doi.org/10.1137/S0040585X97982098}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243284300014}
Linking options:
  • https://www.mathnet.ru/eng/tvp136
  • https://doi.org/10.4213/tvp136
  • https://www.mathnet.ru/eng/tvp/v50/i4/p797
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:593
    Full-text PDF :213
    References:104
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024