Citation:
V. Yu. Korolyev, “An Approximation of Distributions of Sums of Independent Random Variables by Mixtures of Normal Laws”, Teor. Veroyatnost. i Primenen., 34:3 (1989), 581–588; Theory Probab. Appl., 34:3 (1989), 523–531
\Bibitem{Kor89}
\by V.~Yu.~Korolyev
\paper An Approximation of Distributions of Sums of Independent Random Variables by Mixtures of Normal Laws
\jour Teor. Veroyatnost. i Primenen.
\yr 1989
\vol 34
\issue 3
\pages 581--588
\mathnet{http://mi.mathnet.ru/tvp1308}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1022644}
\zmath{https://zbmath.org/?q=an:0706.60047|0691.60021}
\transl
\jour Theory Probab. Appl.
\yr 1989
\vol 34
\issue 3
\pages 523--531
\crossref{https://doi.org/10.1137/1134062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1989DT44400015}
Linking options:
https://www.mathnet.ru/eng/tvp1308
https://www.mathnet.ru/eng/tvp/v34/i3/p581
This publication is cited in the following 3 articles:
Svetlozar T. Rachev, Gennady Samorodnitsky, “Geometric stable distributions in Banach spaces”, J Theor Probab, 7:2 (1994), 351
P. Homble, William P. Mccormick, “Tail areas for randomly stopped sums defined on a Markov chain”, Communications in Statistics. Stochastic Models, 9:4 (1993), 563
V. Yu. Korolev, “Nonuniform estimates of the stability of the normal law under random perturbations of the scale parameter and some of their applications”, J Math Sci, 57:4 (1991), 3270