Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2007, Volume 52, Issue 1, Pages 180–185
DOI: https://doi.org/10.4213/tvp13
(Mi tvp13)
 

This article is cited in 7 scientific papers (total in 7 papers)

Short Communications

Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble

D. A. Timusheva, A. N. Tikhomirovb, A. A. Kholopova

a Syktyvkar State University
b St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (544 kB) Citations (7)
References:
Abstract: It is shown that the Kolmogorov distance between the expected spectral distribution function of an $n\times n$ matrix from the Gaussian orthogonal ensemble and the distribution function of the semicircle law is of order $O(n^{-1})$.
Keywords: random matrix, semicircle law, Hermite function, Gaussian ensemble.
Received: 26.04.2006
English version:
Theory of Probability and its Applications, 2008, Volume 52, Issue 1, Pages 171–177
DOI: https://doi.org/10.1137/S0040585X97982906
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. A. Timushev, A. N. Tikhomirov, A. A. Kholopov, “Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble”, Teor. Veroyatnost. i Primenen., 52:1 (2007), 180–185; Theory Probab. Appl., 52:1 (2008), 171–177
Citation in format AMSBIB
\Bibitem{TimTikKho07}
\by D.~A.~Timushev, A.~N.~Tikhomirov, A.~A.~Kholopov
\paper Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble
\jour Teor. Veroyatnost. i Primenen.
\yr 2007
\vol 52
\issue 1
\pages 180--185
\mathnet{http://mi.mathnet.ru/tvp13}
\crossref{https://doi.org/10.4213/tvp13}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354577}
\zmath{https://zbmath.org/?q=an:1161.60012}
\elib{https://elibrary.ru/item.asp?id=9466886}
\transl
\jour Theory Probab. Appl.
\yr 2008
\vol 52
\issue 1
\pages 171--177
\crossref{https://doi.org/10.1137/S0040585X97982906}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254828600016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42549133558}
Linking options:
  • https://www.mathnet.ru/eng/tvp13
  • https://doi.org/10.4213/tvp13
  • https://www.mathnet.ru/eng/tvp/v52/i1/p180
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:538
    Full-text PDF :186
    References:74
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024