Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 4, Pages 763–767
DOI: https://doi.org/10.4213/tvp129
(Mi tvp129)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

On one extension of a martingale

B. D. Gnedenko

M. V. Lomonosov Moscow State University
Full-text PDF (641 kB) Citations (1)
References:
Abstract: In this paper we introduce an $\varepsilon $-martingale and a strong $\varepsilon$-martingale. The first is defined by the inequality $|\mathbf{E}(X_t\,|\,\mathcal{F}_s)- X_s|\leq\varepsilon$, and the second one can be obtained from the $\varepsilon $-martingale by replacing in the definition fixed time moments with stopping times. The paper proves that a right-continuous $\varepsilon $-martingale is a strong $2\varepsilon$-martingale. At the same time we construct an example of a right-continuous $\varepsilon$-martingale which is not a strong $\varepsilon$-martingale for any $a<2$. We show that the dependence between $\varepsilon $-martingales and strong $\varepsilon$-martingales has no analogues for $\varepsilon$-submartingales. We also give the criterion for testing if a right-continuous with left limits process is a strong $\varepsilon$-martingale or not. The criterion is based on the possibility of uniform approximation of the process by a martingale with precision $\varepsilon/2$.
Keywords: $\varepsilon$-martingale, strong $\varepsilon$-martingale, Doob's stopping time theorem.
Received: 31.03.2005
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 2, Pages 659–662
DOI: https://doi.org/10.1137/S0040585X97982037
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. D. Gnedenko, “On one extension of a martingale”, Teor. Veroyatnost. i Primenen., 50:4 (2005), 763–767; Theory Probab. Appl., 50:2 (2006), 659–662
Citation in format AMSBIB
\Bibitem{Gne05}
\by B.~D.~Gnedenko
\paper On one extension of a martingale
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 4
\pages 763--767
\mathnet{http://mi.mathnet.ru/tvp129}
\crossref{https://doi.org/10.4213/tvp129}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2331987}
\zmath{https://zbmath.org/?q=an:1128.60033}
\elib{https://elibrary.ru/item.asp?id=9157512}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 2
\pages 659--662
\crossref{https://doi.org/10.1137/S0040585X97982037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243284300007}
Linking options:
  • https://www.mathnet.ru/eng/tvp129
  • https://doi.org/10.4213/tvp129
  • https://www.mathnet.ru/eng/tvp/v50/i4/p763
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :155
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024