Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 4, Pages 754–763
DOI: https://doi.org/10.4213/tvp128
(Mi tvp128)
 

Short Communications

On Markov perturbations of quantum random problems with stationary increments

G. G. Amosov

Moscow Institute of Physics and Technology
References:
Abstract: We introduce “Markovian” cocycle perturbations of quantum stochastic processes with stationary increments and the Kolmogorov flows generated by them, which are characterized by a localization of the perturbation to the algebra of events of the past. The Markovian perturbations of the Kolmogorov flow generated by the quantum white noise result in the groups of automorphisms on the algebras of events (the von Neumann algebras in the quantum case) possessing the restrictions being isomorphic to the initial Kolmogorov flow. The possibility of obtaining this restriction can be interpreted as some analogue (in the quantum case) of the Wold decomposition, which allows us to exclude “nondeterministic” part of the process.
Keywords: quantum stochastic processes, cocycle perturbations of the Kolmogorov flow, Wold decomposition.
Received: 23.05.2002
Revised: 19.02.2004
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 4, Pages 650–658
DOI: https://doi.org/10.1137/S0040585X97982025
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. G. Amosov, “On Markov perturbations of quantum random problems with stationary increments”, Teor. Veroyatnost. i Primenen., 50:4 (2005), 754–763; Theory Probab. Appl., 50:4 (2006), 650–658
Citation in format AMSBIB
\Bibitem{Amo05}
\by G.~G.~Amosov
\paper On Markov perturbations of quantum random problems with stationary increments
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 4
\pages 754--763
\mathnet{http://mi.mathnet.ru/tvp128}
\crossref{https://doi.org/10.4213/tvp128}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2331986}
\zmath{https://zbmath.org/?q=an:1113.81084}
\elib{https://elibrary.ru/item.asp?id=9157511}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 4
\pages 650--658
\crossref{https://doi.org/10.1137/S0040585X97982025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243284300006}
Linking options:
  • https://www.mathnet.ru/eng/tvp128
  • https://doi.org/10.4213/tvp128
  • https://www.mathnet.ru/eng/tvp/v50/i4/p754
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024