Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 4, Pages 675–710
DOI: https://doi.org/10.4213/tvp125
(Mi tvp125)
 

This article is cited in 17 scientific papers (total in 17 papers)

On a two-temperature problem for Klein–Gordon equation

T. V. Dudnikovaa, A. I. Komechb

a Electrostal' Polytechnic Institute
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider the Klein–Gordon equation in $\mathbf{R}^n$, $n\geq 2$, with constant or variable coefficients. The initial datum is a random function with a finite mean density of the energy and satisfies a Rosenblatt- or Ibragimov–Linnik-type mixing condition. We also assume that the random function is close to different space-homogeneous processes as $x_n\to\pm\infty$, with the distributions $\mu_\pm$. We study the distribution $\mu_t$ of the random solution at time $t\in\mathbf{R}$. The main result is the convergence of $\mu_t$ to a Gaussian translation-invariant measure as $t\to\infty$ that means the central limit theorem for the Klein–Gordon equation. The proof is based on the Bernstein “room-corridor” method and oscillatory integral estimates. The application to the case of the Gibbs measures $\mu_\pm=g_\pm$ with two different temperatures $T_{\pm}$ is given. It is proved that limit mean energy current density formally is $-\infty\cdot(0,\dots,0,T_+-T_-)$ for the Gibbs measures, and it is finite and equals $-C(0,\dots,0,T_+-T_-)$ with some positive constant $C>0$ for the smoothed solution. This corresponds to the second law of thermodynamics.
Keywords: Klein–Gordon equation, Cauchy problem, random initial data, mixing condition, Fourier transform, weak convergence of measures, Gaussian measures, covariance functions and matrices, characteristic functional.
Received: 21.10.2003
Revised: 09.05.2005
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 4, Pages 582–611
DOI: https://doi.org/10.1137/S0040585X97981998
Bibliographic databases:
Language: Russian
Citation: T. V. Dudnikova, A. I. Komech, “On a two-temperature problem for Klein–Gordon equation”, Teor. Veroyatnost. i Primenen., 50:4 (2005), 675–710; Theory Probab. Appl., 50:4 (2006), 582–611
Citation in format AMSBIB
\Bibitem{DudKom05}
\by T.~V.~Dudnikova, A.~I.~Komech
\paper On a two-temperature problem for Klein--Gordon equation
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 4
\pages 675--710
\mathnet{http://mi.mathnet.ru/tvp125}
\crossref{https://doi.org/10.4213/tvp125}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2331983}
\zmath{https://zbmath.org/?q=an:1119.82034}
\elib{https://elibrary.ru/item.asp?id=9157508}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 4
\pages 582--611
\crossref{https://doi.org/10.1137/S0040585X97981998}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243284300003}
\elib{https://elibrary.ru/item.asp?id=13505506}
Linking options:
  • https://www.mathnet.ru/eng/tvp125
  • https://doi.org/10.4213/tvp125
  • https://www.mathnet.ru/eng/tvp/v50/i4/p675
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:497
    Full-text PDF :180
    References:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024