Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 4, Pages 652–674
DOI: https://doi.org/10.4213/tvp124
(Mi tvp124)
 

This article is cited in 27 scientific papers (total in 27 papers)

Global regularity and estimates for solutions of parabolic equations

V. I. Bogacheva, M. Röcknerb, S. V. Shaposhnikovc

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Bielefeld University
c M. V. Lomonosov Moscow State University
References:
Abstract: Given a second-order parabolic operator
$$ Lu(t,x):=\frac{\partial u(t,x)}{\partial t}+a^{ij}(t,x)\partial_{x_i}\partial_{x_j}u(t,x)+b^i(t,x)\partial_{x_i}u(t,x), $$
we consider the weak parabolic equation $L^{*}\mu=0$ for Borel probability measures on $(0,1)\times\mathbf{R}^d$. The equation is understood as the equality
$$ \int_{(0,1)\timesR^d} Lu\,d\mu=0 $$
for all smooth functions $u$ with compact support in $(0,1)\timesR^d$. This equation is satisfied for the transition probabilities of the diffusion process associated with $L$. We show that under broad assumptions, $\mu$ has the form $\mu=\varrho(t,x)\,dt\,dx$, where the function $x\mapsto\varrho(t,x)$ is Sobolev, $|\nabla_x \varrho(x,t)|^2/\varrho(t,x)$ is Lebesgue integrable over $[0,\tau]\times\mathbf{R}^d$, and $\varrho\in L^p([0,\tau]\timesR^d)$ for all $p\in[1,+\infty)$ and $\tau<1$. Moreover, a sufficient condition for the uniform boundedness of $\varrho$ on $[0,\tau]\timesR^d$ is given.
Keywords: parabolic equations for measures, transition probabilities, regularity of solutions of parabolic equations, estimates of solutions of parabolic equations.
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 4, Pages 561–581
DOI: https://doi.org/10.1137/S0040585X97981986
Bibliographic databases:
Language: Russian
Citation: V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Global regularity and estimates for solutions of parabolic equations”, Teor. Veroyatnost. i Primenen., 50:4 (2005), 652–674; Theory Probab. Appl., 50:4 (2006), 561–581
Citation in format AMSBIB
\Bibitem{BogRocSha05}
\by V.~I.~Bogachev, M.~R\"ockner, S.~V.~Shaposhnikov
\paper Global regularity and estimates for solutions of parabolic equations
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 4
\pages 652--674
\mathnet{http://mi.mathnet.ru/tvp124}
\crossref{https://doi.org/10.4213/tvp124}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2331982}
\zmath{https://zbmath.org/?q=an:05139656}
\elib{https://elibrary.ru/item.asp?id=9157507}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 4
\pages 561--581
\crossref{https://doi.org/10.1137/S0040585X97981986}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243284300002}
Linking options:
  • https://www.mathnet.ru/eng/tvp124
  • https://doi.org/10.4213/tvp124
  • https://www.mathnet.ru/eng/tvp/v50/i4/p652
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:852
    Full-text PDF :267
    References:88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024