|
Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 4, Pages 745–756
(Mi tvp1229)
|
|
|
|
This article is cited in 17 scientific papers (total in 17 papers)
Asymptotic expansion for the distribution of a statistic admitting a stochastic expansion. I
D. M. Čibisov Moscow
Abstract:
Let $(Y_{0i},\mathbf Y_i)=(Y_{0i},Y_{1i},\dots,Y_{pi})$, $i=1,\dots,n$, be i.i.d. random vectors in
$R^{p+1}$, and $\{h_j\}$ be a finite set of polinomials of $p+1$ variables. Let
\begin{gather*}
S_n=n^{-1/2}\sum Y_{0i},\qquad T_{nl}=n^{-1/2}\sum Y_{li},\qquad\mathbf T_n=(T_{n1},\dots,T_{np}),
\\
Z_n=S_n+\sum n^{-j/2}h_j(S_n,\mathbf T_n).
\end{gather*}
In the paper an asymptotic expansion of the Edgeworth's type for the distribution function
of $Z_n$ is obtained under conditions which are weaker than those previously known.
Received: 21.09.1978
Citation:
D. M. Čibisov, “Asymptotic expansion for the distribution of a statistic admitting a stochastic expansion. I”, Teor. Veroyatnost. i Primenen., 25:4 (1980), 745–756; Theory Probab. Appl., 25:4 (1981), 732–744
Linking options:
https://www.mathnet.ru/eng/tvp1229 https://www.mathnet.ru/eng/tvp/v25/i4/p745
|
Statistics & downloads: |
Abstract page: | 279 | Full-text PDF : | 111 | First page: | 2 |
|