Abstract:
We consider a stochastic differential equation
dξθ=aθ(t,ξθ(⋅))dt+Bθ(t,ξθ(t))dw(t),ξθ(0)=xθ,dξθ=aθ(t,ξθ(⋅))dt+Bθ(t,ξθ(t))dw(t),ξθ(0)=xθ,
such that its coefficients and initial condition are continuous functions of θ∈Θθ∈Θ, where
ΘΘ is a complete metric space. If an equation has a strong solution on a dense subset
Θ1⊂ΘΘ1⊂Θ, then Θ1Θ1 is of the second category and coincides with the set Θ0Θ0 of
continuity of ξθ(t)ξθ(t).
Citation:
A. V. Skorohod, “Stochastic differential equations depending on a parameter”, Teor. Veroyatnost. i Primenen., 25:4 (1980), 675–682; Theory Probab. Appl., 25:4 (1981), 659–666
This publication is cited in the following 2 articles:
Rabih Salhab, Roland P. Malhame, Jerome Le Ny, “Collective Stochastic Discrete Choice Problems: A Min-LQG Dynamic Game Formulation”, IEEE Trans. Automat. Contr., 65:8 (2020), 3302
Hayri Korezlioglu, Wolfgang J. Runggaldier, “Filtering for nonlinear systems driven by nonwhite noises:an approximation scheme”, Stochastics and Stochastic Reports, 44:1-2 (1993), 65