Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1969, Volume 14, Issue 3, Pages 393–420 (Mi tvp1195)  

This article is cited in 21 scientific papers (total in 21 papers)

Combinatorial algebra and random graphs

V. E. Stepanov

Moscow
Abstract: Let $A$ be a finite set of vertices and $\lambda_a>0$ be the intensity of the vertex $a\in A$. A random time-dependent graph $\mathscr G_L(A\mid t)$ is defined as follows: at time $t=0$ all the vertices are isolated; the probability that at time $t>0$ vertices $a$ and $b$ are connected equals $1-e^{-\lambda}a^\lambda b^t$, and the connections appear independently for different pairs, let $\mathbf P_L(A\mid t)$ be the probability that the random graph $\mathscr G_L(A\mid t)$ is connected.
In the paper, an explicit expression for $\mathbf P_L(A\mid t)$ is found, a number of combinatorial relations including the probabilities $\mathbf P_L(A\mid t)$ is obtained, and it is proved that if the set of vertices $A$, intensities of vertices $\lambda_a$, and time $t$ are changed in a certain way, then, under some conditions, $\mathbf P_L(A\mid t)e^{\mu(A\mid t)}\to1$, where
$$ \mu(A\mid t)=\sum_{a\in A}\exp\{-t\lambda_aL(A)\}\quad\text{and}\quad L(A)=\sum_{a\in A}\lambda_a. $$
Received: 05.11.1967
English version:
Theory of Probability and its Applications, 1969, Volume 14, Issue 3, Pages 373–399
DOI: https://doi.org/10.1137/1114052
Bibliographic databases:
Language: Russian
Citation: V. E. Stepanov, “Combinatorial algebra and random graphs”, Teor. Veroyatnost. i Primenen., 14:3 (1969), 393–420; Theory Probab. Appl., 14:3 (1969), 373–399
Citation in format AMSBIB
\Bibitem{Ste69}
\by V.~E.~Stepanov
\paper Combinatorial algebra and random graphs
\jour Teor. Veroyatnost. i Primenen.
\yr 1969
\vol 14
\issue 3
\pages 393--420
\mathnet{http://mi.mathnet.ru/tvp1195}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=263129}
\zmath{https://zbmath.org/?q=an:0239.05124}
\transl
\jour Theory Probab. Appl.
\yr 1969
\vol 14
\issue 3
\pages 373--399
\crossref{https://doi.org/10.1137/1114052}
Linking options:
  • https://www.mathnet.ru/eng/tvp1195
  • https://www.mathnet.ru/eng/tvp/v14/i3/p393
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:610
    Full-text PDF :327
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024