Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 2, Pages 389–393 (Mi tvp1184)  

This article is cited in 13 scientific papers (total in 13 papers)

Short Communications

Any Markov process in a Borel space has a transition function

S. E. Kuznecov

Moscow
Abstract: The most natural way to define «Markov process» $x_t$ is to say that it is a stochastic process with the Markov property. However, in some of the most interesting applications it is possible to consider only the processes with transition function, which is a family $\{p_t^s(x,\Gamma)\}$ of conditional distributions of $x_t$ given $x_s$, satisfying Kolmogorov–Chapman equation $p_t^s p_u^t=p_u^s$, $s<t<u$. We prove that the Markov process has the transition function if its state space is universal (i. e. it is isomorphic to a universally measurable subset of a Polish space).
Received: 18.12.1979
English version:
Theory of Probability and its Applications, 1981, Volume 25, Issue 2, Pages 384–388
DOI: https://doi.org/10.1137/1125049
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. E. Kuznecov, “Any Markov process in a Borel space has a transition function”, Teor. Veroyatnost. i Primenen., 25:2 (1980), 389–393; Theory Probab. Appl., 25:2 (1981), 384–388
Citation in format AMSBIB
\Bibitem{Kuz80}
\by S.~E.~Kuznecov
\paper Any Markov process in a~Borel space has a~transition function
\jour Teor. Veroyatnost. i Primenen.
\yr 1980
\vol 25
\issue 2
\pages 389--393
\mathnet{http://mi.mathnet.ru/tvp1184}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=572574}
\zmath{https://zbmath.org/?q=an:0456.60077|0431.60071}
\transl
\jour Theory Probab. Appl.
\yr 1981
\vol 25
\issue 2
\pages 384--388
\crossref{https://doi.org/10.1137/1125049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LU72000017}
Linking options:
  • https://www.mathnet.ru/eng/tvp1184
  • https://www.mathnet.ru/eng/tvp/v25/i2/p389
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:422
    Full-text PDF :157
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024