|
Teoriya Veroyatnostei i ee Primeneniya, 1969, Volume 14, Issue 2, Pages 348–354
(Mi tvp1182)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short Communications
Some explicit formulas in the theory of branching stochastic processes with discrete time and one-type particles
B. I. Selivanov Moscow
Abstract:
Let $Z_0=1$, $Z_n$, $n=1,2,\dots,$ be the number of particles belonging to the $n$-th generation of a Halton–Watson branching process, $p_{nr}=\mathbf P\{Z_n=r\}$ and $F_n(z)=\sum_{r\ge0}p_{nr}z^r$. It is supposed that $m=\mathbf EZ_1\ne1$ and $F(z)=F_1(z)$ be regular at the point $z=1$ for $m<1$. In the paper some formulas and an asymptotic expansion for the probabilities $p_{nr}$ are obtained.
Received: 18.04.1967 Revised: 24.01.1968
Citation:
B. I. Selivanov, “Some explicit formulas in the theory of branching stochastic processes with discrete time and one-type particles”, Teor. Veroyatnost. i Primenen., 14:2 (1969), 348–354; Theory Probab. Appl., 14:2 (1969), 336–342
Linking options:
https://www.mathnet.ru/eng/tvp1182 https://www.mathnet.ru/eng/tvp/v14/i2/p348
|
|