|
This article is cited in 11 scientific papers (total in 11 papers)
Short Communications
Some properties of generalized Pickands constants
K. Debicki Wroclaw University
Abstract:
We study properties of generalized Pickands constants $\mathcal{H}_{\eta}$, which appear in the extreme value theory of Gaussian processes and are defined via the limit
$$
\mathcal{H}_{\eta}=\lim_{T\to\infty}\frac{\mathcal{H}_{\eta}(T)}{T},
$$
where $\mathcal{H}_{\eta}(T)=\mathbf{E}\exp(\max_{t \in[0,T]}(\sqrt{2}\,\eta(t)-\mathrm{Var}(\eta(t))))$ and $\eta(t)$ is a centered Gaussian process with stationary increments.
We give estimates of the rate of convergence of $\mathcal{H}_{\eta}(T)/T$ to $\mathcal{H}_{\eta}$ and prove that if $\eta_{(n)}(t)$ weakly converges in $C([0,\infty))$ to $\eta(t)$, then under some weak conditions, $\lim_{n\to\infty}\mathcal{H}_{\eta_{(n)}}=\mathcal{H}_{\eta}$.
As an application we prove that $\Upsilon(\alpha)=\mathcal{H}_{B_{\alpha/2}}$ is continuous on $(0,2]$, where $B_{\alpha/2}(t)$ is a fractional Brownian motion with Hurst parameter $\alpha/2$.
Keywords:
exact asymptotics, extremes, fractional Brownian motion, Gaussian process, generalized Pickands constants.
Received: 20.08.2002
Citation:
K. Debicki, “Some properties of generalized Pickands constants”, Teor. Veroyatnost. i Primenen., 50:2 (2005), 396–404; Theory Probab. Appl., 50:2 (2006), 290–298
Linking options:
https://www.mathnet.ru/eng/tvp118https://doi.org/10.4213/tvp118 https://www.mathnet.ru/eng/tvp/v50/i2/p396
|
|