Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 2, Pages 396–404
DOI: https://doi.org/10.4213/tvp118
(Mi tvp118)
 

This article is cited in 11 scientific papers (total in 11 papers)

Short Communications

Some properties of generalized Pickands constants

K. Debicki

Wroclaw University
References:
Abstract: We study properties of generalized Pickands constants $\mathcal{H}_{\eta}$, which appear in the extreme value theory of Gaussian processes and are defined via the limit
$$ \mathcal{H}_{\eta}=\lim_{T\to\infty}\frac{\mathcal{H}_{\eta}(T)}{T}, $$
where $\mathcal{H}_{\eta}(T)=\mathbf{E}\exp(\max_{t \in[0,T]}(\sqrt{2}\,\eta(t)-\mathrm{Var}(\eta(t))))$ and $\eta(t)$ is a centered Gaussian process with stationary increments.
We give estimates of the rate of convergence of $\mathcal{H}_{\eta}(T)/T$ to $\mathcal{H}_{\eta}$ and prove that if $\eta_{(n)}(t)$ weakly converges in $C([0,\infty))$ to $\eta(t)$, then under some weak conditions, $\lim_{n\to\infty}\mathcal{H}_{\eta_{(n)}}=\mathcal{H}_{\eta}$.
As an application we prove that $\Upsilon(\alpha)=\mathcal{H}_{B_{\alpha/2}}$ is continuous on $(0,2]$, where $B_{\alpha/2}(t)$ is a fractional Brownian motion with Hurst parameter $\alpha/2$.
Keywords: exact asymptotics, extremes, fractional Brownian motion, Gaussian process, generalized Pickands constants.
Received: 20.08.2002
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 2, Pages 290–298
DOI: https://doi.org/10.1137/S0040585X97981755
Bibliographic databases:
Document Type: Article
Language: English
Citation: K. Debicki, “Some properties of generalized Pickands constants”, Teor. Veroyatnost. i Primenen., 50:2 (2005), 396–404; Theory Probab. Appl., 50:2 (2006), 290–298
Citation in format AMSBIB
\Bibitem{Deb05}
\by K.~Debicki
\paper Some properties of generalized Pickands constants
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 2
\pages 396--404
\mathnet{http://mi.mathnet.ru/tvp118}
\crossref{https://doi.org/10.4213/tvp118}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2222683}
\zmath{https://zbmath.org/?q=an:1089.60035}
\elib{https://elibrary.ru/item.asp?id=9153133}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 2
\pages 290--298
\crossref{https://doi.org/10.1137/S0040585X97981755}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238760000009}
Linking options:
  • https://www.mathnet.ru/eng/tvp118
  • https://doi.org/10.4213/tvp118
  • https://www.mathnet.ru/eng/tvp/v50/i2/p396
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024