Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1969, Volume 14, Issue 2, Pages 284–291 (Mi tvp1171)  

This article is cited in 1 scientific paper (total in 1 paper)

The optimal policy in games with unbounded sequence of moves

Yu. I. Kifer

Moscow
Full-text PDF (522 kB) Citations (1)
Abstract: Two players gamble a game on a finite set $X$. For each $x\in X$, a subset $\Gamma_x\subseteq X$ and a number $\varepsilon(x)$ equal to 1 or to $-1$ are defined. Player I may move from a point $x\in\{x\colon\varepsilon(x)=1\}$ to any point $y\in\Gamma_x$; this move takes a time $t(xy)$ and gives him a payoff $g(xy)$ payed by player II. The same situation exists if to replace player I by player II and points $x\in\{x\colon\varepsilon(x)=1\}$ by $x\in\{x\colon\varepsilon(x)=-1\}$. Player I tries to maximize the average income per unit time
$$ \varphi(x_0)=\varlimsup_{n\to\infty}\frac{\sum_{k=1}^n\varepsilon(x_{k-1})g(x_{k-1}x_k)}{\sum_{k=1}^nt(x+{k-1}x_k)} $$

Along with this game the finite game is considered which terminates when the players get to a point for the second time. The income of the 1st player is defined as the average payoff per cycle. The existence of optimal stationary policies is proved. These policies coincide with stationary ones in the infinite game. It enables to construct optimal policies by the usual linear programming method for finite games.
Received: 24.03.1967
English version:
Theory of Probability and its Applications, 1969, Volume 14, Issue 2, Pages 279–286
DOI: https://doi.org/10.1137/1114034
Bibliographic databases:
Language: Russian
Citation: Yu. I. Kifer, “The optimal policy in games with unbounded sequence of moves”, Teor. Veroyatnost. i Primenen., 14:2 (1969), 284–291; Theory Probab. Appl., 14:2 (1969), 279–286
Citation in format AMSBIB
\Bibitem{Kif69}
\by Yu.~I.~Kifer
\paper The optimal policy in games with unbounded sequence of moves
\jour Teor. Veroyatnost. i Primenen.
\yr 1969
\vol 14
\issue 2
\pages 284--291
\mathnet{http://mi.mathnet.ru/tvp1171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=253755}
\zmath{https://zbmath.org/?q=an:0193.19503|0181.46901}
\transl
\jour Theory Probab. Appl.
\yr 1969
\vol 14
\issue 2
\pages 279--286
\crossref{https://doi.org/10.1137/1114034}
Linking options:
  • https://www.mathnet.ru/eng/tvp1171
  • https://www.mathnet.ru/eng/tvp/v14/i2/p284
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :102
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024