Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 2, Pages 364–366 (Mi tvp1166)  

This article is cited in 11 scientific papers (total in 11 papers)

Short Communications

A converse to the law of the iterated logarithm for random walk

A. I. Martikaĭnen

Petrozavodsk
Abstract: Let $\{S_n\}$ be a random walk with independent increments. Then $\mathbf{E}S_1=0$, $\mathbf{E}S_1^2=1$ iff
$$ \limsup_{n\to\infty}\frac{S_n}{\sqrt{2n\log\log n}}=1\qquad\text{almost surely.} $$
Received: 27.06.1978
English version:
Theory of Probability and its Applications, 1981, Volume 25, Issue 2, Pages 361–362
DOI: https://doi.org/10.1137/1125044
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. I. Martikaǐnen, “A converse to the law of the iterated logarithm for random walk”, Teor. Veroyatnost. i Primenen., 25:2 (1980), 364–366; Theory Probab. Appl., 25:2 (1981), 361–362
Citation in format AMSBIB
\Bibitem{Mar80}
\by A.~I.~Martika{\v\i}nen
\paper A converse to the law of the iterated logarithm for random walk
\jour Teor. Veroyatnost. i Primenen.
\yr 1980
\vol 25
\issue 2
\pages 364--366
\mathnet{http://mi.mathnet.ru/tvp1166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=572569}
\zmath{https://zbmath.org/?q=an:0456.60026|0432.60037}
\transl
\jour Theory Probab. Appl.
\yr 1981
\vol 25
\issue 2
\pages 361--362
\crossref{https://doi.org/10.1137/1125044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LU72000012}
Linking options:
  • https://www.mathnet.ru/eng/tvp1166
  • https://www.mathnet.ru/eng/tvp/v25/i2/p364
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:222
    Full-text PDF :116
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024