Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 2, Pages 382–390
DOI: https://doi.org/10.4213/tvp116
(Mi tvp116)
 

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

On the central limit Newman theorem

A. P. Shashkin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (930 kB) Citations (2)
References:
Abstract: We construct an example of a strictly stationary associated random sequence which does not satisfy the central limit theorem and whose the partial sums' variance grows in a defined regular way. This result generalizes the well-known example of N. Herrndorf and shows the optimality of conditions in the classical Newman's theorem.
Keywords: associated random variables, stationarity, central limit theorem, slowly varying functions.
Received: 14.07.2003
Revised: 25.03.2004
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 2, Pages 330–337
DOI: https://doi.org/10.1137/S0040585X97981731
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. P. Shashkin, “On the central limit Newman theorem”, Teor. Veroyatnost. i Primenen., 50:2 (2005), 382–390; Theory Probab. Appl., 50:2 (2006), 330–337
Citation in format AMSBIB
\Bibitem{Sha05}
\by A.~P.~Shashkin
\paper On the central limit Newman theorem
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 2
\pages 382--390
\mathnet{http://mi.mathnet.ru/tvp116}
\crossref{https://doi.org/10.4213/tvp116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2221721}
\zmath{https://zbmath.org/?q=an:1090.60025}
\elib{https://elibrary.ru/item.asp?id=9153131}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 2
\pages 330--337
\crossref{https://doi.org/10.1137/S0040585X97981731}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238760000015}
\elib{https://elibrary.ru/item.asp?id=13517242}
Linking options:
  • https://www.mathnet.ru/eng/tvp116
  • https://doi.org/10.4213/tvp116
  • https://www.mathnet.ru/eng/tvp/v50/i2/p382
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025