|
Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 2, Pages 303–312
(Mi tvp1158)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
The optimal stopping of a controlled diffusion
L. G. Mikhaĭlovskaya Moscow
Abstract:
We prove that a stopping time
$$
\tau=\inf\{t:(s+t,x_t)\notin Q_0\},
$$
where $Q_0=\{(t,x):v(t,x)-g(t,x)>0\}$ is the optimal stopping time for the controlled
diffusion
$$
x_t=x+\int_0^t\sigma(\alpha_r,s+r,x_r)\,dw_r+\int_0^tb(\alpha_r,s+r,x_r)\,dr
$$
with gain
$$
v(s,x)=\sup_{\alpha\in\mathfrak A}\sup_{0\le\tau\le T-s}\mathbf M_{s,x}^\alpha
\biggl\{\int_0^\tau f^{\alpha_t}(s+t,x_t)e^{-\varphi_t}\,dt+g(s+\tau,x_\tau)e^{-\varphi_\tau}\biggr\}.
$$
Received: 23.08.1978
Citation:
L. G. Mikhaǐlovskaya, “The optimal stopping of a controlled diffusion”, Teor. Veroyatnost. i Primenen., 25:2 (1980), 303–312; Theory Probab. Appl., 25:2 (1981), 299–308
Linking options:
https://www.mathnet.ru/eng/tvp1158 https://www.mathnet.ru/eng/tvp/v25/i2/p303
|
Statistics & downloads: |
Abstract page: | 154 | Full-text PDF : | 71 |
|