Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 2, Pages 371–379
DOI: https://doi.org/10.4213/tvp114
(Mi tvp114)
 

This article is cited in 18 scientific papers (total in 18 papers)

Short Communications

Estimates of stability for finite homogeneous continuous-time Markov chains

A. Yu. Mitrofanov

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: This paper obtains new stability estimates on infinite time interval and limit stability estimates for a finite homogeneous continuous-time Markov chain with a unique stationary distribution. The connection between the stability of the Markov chain under perturbation of the generator and the rate of convergence to stationarity is considered. Markov chains with a strongly accessible state are given special attention.
Keywords: continuous-time Markov chain, stability estimates under perturbations, ergodicity coefficient, exponential convergence, spectral gap, strongly accessible state.
Received: 13.11.2001
Revised: 07.10.2004
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 2, Pages 319–326
DOI: https://doi.org/10.1137/S0040585X97981718
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Yu. Mitrofanov, “Estimates of stability for finite homogeneous continuous-time Markov chains”, Teor. Veroyatnost. i Primenen., 50:2 (2005), 371–379; Theory Probab. Appl., 50:2 (2006), 319–326
Citation in format AMSBIB
\Bibitem{Mit05}
\by A.~Yu.~Mitrofanov
\paper Estimates of stability for finite homogeneous continuous-time Markov chains
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 2
\pages 371--379
\mathnet{http://mi.mathnet.ru/tvp114}
\crossref{https://doi.org/10.4213/tvp114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2221719}
\zmath{https://zbmath.org/?q=an:1089.60045}
\elib{https://elibrary.ru/item.asp?id=9153129}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 2
\pages 319--326
\crossref{https://doi.org/10.1137/S0040585X97981718}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000238760000013}
Linking options:
  • https://www.mathnet.ru/eng/tvp114
  • https://doi.org/10.4213/tvp114
  • https://www.mathnet.ru/eng/tvp/v50/i2/p371
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:778
    Full-text PDF :224
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024