|
Teoriya Veroyatnostei i ee Primeneniya, 1969, Volume 14, Issue 1, Pages 156–161
(Mi tvp1130)
|
|
|
|
This article is cited in 1277 scientific papers (total in 1277 papers)
Short Communications
Nonparametric estimation of a multidimensional probability density
V. A. Epanechnikov Moscow
Abstract:
A sample of size $n$ from a $k$-dimensional absolutely continuous distribution being available, the function
$$
f_n(x_1,\dots,x_k)=\frac1n\sum_{i=1}^n\prod_{l=1}^k\frac1{h_l(n)}K_l\biggl(\frac{x_l-x_l^{(i)}}{h_l(n)}\biggr)
$$
is taken as a density function estimator, where $K_l(y)$'s are given real-valued functions symmetric with respect to $y=0$ and having bounded moments. $f_n(x_1,\dots,x_k)$ is shown to be asymptotically unbiased and consistent estimate of the probability density at each point $(x_1,\dots,x_k)$ provided that $\lim\limits_{n\to\infty}h_l(n)=0$, $\lim\limits_{n\to\infty}\prod_{l=1}^kh_l(n)\to\infty$. Optimal functions $K_l(y)$ are found which reduce the asymptotic relative total mean-square error to the minimum.
Received: 01.02.1967
Citation:
V. A. Epanechnikov, “Nonparametric estimation of a multidimensional probability density”, Teor. Veroyatnost. i Primenen., 14:1 (1969), 156–161; Theory Probab. Appl., 14:1 (1969), 153–158
Linking options:
https://www.mathnet.ru/eng/tvp1130 https://www.mathnet.ru/eng/tvp/v14/i1/p156
|
Statistics & downloads: |
Abstract page: | 6274 | Full-text PDF : | 2453 | First page: | 17 |
|