|
Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 3, Pages 523–534
(Mi tvp1092)
|
|
|
|
This article is cited in 14 scientific papers (total in 14 papers)
Limit theorems for a critical Galton–Watson process with migration
S. V. Nagaev, L. V. Han Novosibirsk
Abstract:
The critical Galton–Watson process with immigration and emigration is investigated.
We consider the population of particles which develop according to the critical
Galton–Watson process with the offspring generating function $f(s)$, and at each moment
$n=0,1,\dots$ either $k$ ($k=0,1,\dots$) particles immigrate in the population with the
probability $p_k$ or $j$ ($j=1,\dots,m$) particles of those present at time $n$ emigrate from the
population with probability $q_j$, where $m$ is a fixed natural number,
$$
\sum_{k=0}^\infty p_k+\sum_{k=1}^m q_k=1,\qquad q_m>0.
$$
Let $Z_n$ ($n=0,1,\dots$) be the number of particles at time $n$. We suppose that
$$
Z_0=0,\qquad f'(1-)=1,\qquad\sum_{k=1}^\infty kp_k-\sum_{k=1}^m kq_k=0.
$$
The following results are obtained. If
$$
f(0)>0,\qquad B=1/2f''(1-)<\infty,\qquad\sum_{k=1}^\infty k^2p_k<\infty,
$$
then for some $A_0\in(0,\infty)$
\begin{gather*}
\mathbf P\{Z_n=0\}\sim\frac{A_0}{\log n},\quad\mathbf MZ_n\sim\frac{B_n}{\log n},\quad\mathbf DZ_n\sim\frac{2B^2n^2}{\log n}\quad(n\to\infty),
\\
\lim_{n\to\infty}\mathbf P\left\{\frac{\log Z_n}{\log n}<x\right\}=x,\qquad x\in[0,1].
\end{gather*}
Citation:
S. V. Nagaev, L. V. Han, “Limit theorems for a critical Galton–Watson process with migration”, Teor. Veroyatnost. i Primenen., 25:3 (1980), 523–534; Theory Probab. Appl., 25:3 (1981), 514–525
Linking options:
https://www.mathnet.ru/eng/tvp1092 https://www.mathnet.ru/eng/tvp/v25/i3/p523
|
|