Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1969, Volume 14, Issue 1, Pages 35–42 (Mi tvp1076)  

This article is cited in 1 scientific paper (total in 1 paper)

On nontransitivity and ergodicity of Gaussian Markov processes

M. B. Nevel'son

Moscow
Full-text PDF (472 kB) Citations (1)
Abstract: A stochastic process $X=(X^{s,x}(t),P)$ in an $n$-dimensional Euclidean space $E_n$ is studied which satisfies the stochastic differential equation $(1)$, where $B(t)$ and $C(t)$ are periodic matrices and $\eta(t)$ is an $n$-dimensional white noise process.
Provided that, for any $t>s>0$, open set $U\subset E_n$ and $x\in E_n$,
$$ P\{X^{s,x}(t)\in U\}>0, $$
the following results are obtained.
Theorem 1. The $X$ process is recurrent if and only if the characteristic numbers $\alpha_1,\dots,\alpha_n$ of the system $(1)$ satisfy at least one of conditions 4–7.
Theorem 2. {\em Let matrices $B$ and $C$ be constant. Then the $X$ process is ergodic if and only if the eigenvalues $\lambda_1,\dots,\lambda_n$ of $B$ satisfy the condition
$$ \max_{1\le i\le n}\operatorname{Re}\lambda_i<0. $$
}
Received: 12.06.1967
English version:
Theory of Probability and its Applications, 1969, Volume 14, Issue 1, Pages 35–43
DOI: https://doi.org/10.1137/1114004
Bibliographic databases:
Language: Russian
Citation: M. B. Nevel'son, “On nontransitivity and ergodicity of Gaussian Markov processes”, Teor. Veroyatnost. i Primenen., 14:1 (1969), 35–42; Theory Probab. Appl., 14:1 (1969), 35–43
Citation in format AMSBIB
\Bibitem{Nev69}
\by M.~B.~Nevel'son
\paper On nontransitivity and ergodicity of Gaussian Markov processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1969
\vol 14
\issue 1
\pages 35--42
\mathnet{http://mi.mathnet.ru/tvp1076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=253417}
\zmath{https://zbmath.org/?q=an:0281.60043|0196.20002}
\transl
\jour Theory Probab. Appl.
\yr 1969
\vol 14
\issue 1
\pages 35--43
\crossref{https://doi.org/10.1137/1114004}
Linking options:
  • https://www.mathnet.ru/eng/tvp1076
  • https://www.mathnet.ru/eng/tvp/v14/i1/p35
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024