Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1999, Volume 44, Issue 4, Pages 776–795
DOI: https://doi.org/10.4213/tvp1065
(Mi tvp1065)
 

This article is cited in 4 scientific papers (total in 4 papers)

Entropy numbers of some ergodic averages

C. Gamet, M. Weber

Institut de Recherche Mathématique Avancée, Université Louis Pasteur et CNRS, France
Abstract: In this paper we extend a recent remarkable covering numbers estimate for averages of contractions in a Hilbert space $H$ due to Talagrand to some moving averages of contractions. By introducing a second regularization in Talagrand's spectral regularization, we find mild conditions on the spectral measure associated to any $x\in H$, allowing estimation of the number of Hilbertian balls of radius $0 < \varepsilon\le 1$, enough to cover the subset of $H$ defined by $\{B_n(x)=n^{-1}\sum_{j=n^2}^{n^2+n-1}U^jx,n\in\mathcal{N}\}$, where $U$ is a contraction of $H$ and $\mathcal{N}$ a geometric sequence. Moreover, we show that these conditions on the spectral measure ensure the existence of the modulus of continuity of $\{T^{-1}\int_0^Tf\circ U_t dt,T\ge1\}$, where $f$ is a contraction of $L^2(\mu)$ and $\{U_t,t\in\mathbb{R}\}$ is a flow which preserves the measure $\mu$. Finally, we give a covering numbers estimate in a non-Hilbertian case.
Keywords: spectral lemma, ergodic averages, entropy numbers.
Received: 11.11.1997
Revised: 24.12.1998
English version:
Theory of Probability and its Applications, 2000, Volume 44, Issue 4, Pages 650–668
DOI: https://doi.org/10.1137/S0040585X97977896
Bibliographic databases:
Language: English
Citation: C. Gamet, M. Weber, “Entropy numbers of some ergodic averages”, Teor. Veroyatnost. i Primenen., 44:4 (1999), 776–795; Theory Probab. Appl., 44:4 (2000), 650–668
Citation in format AMSBIB
\Bibitem{GamWeb99}
\by C.~Gamet, M.~Weber
\paper Entropy numbers of some ergodic averages
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 4
\pages 776--795
\mathnet{http://mi.mathnet.ru/tvp1065}
\crossref{https://doi.org/10.4213/tvp1065}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1811132}
\zmath{https://zbmath.org/?q=an:0978.47006}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 4
\pages 650--668
\crossref{https://doi.org/10.1137/S0040585X97977896}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165796900002}
Linking options:
  • https://www.mathnet.ru/eng/tvp1065
  • https://doi.org/10.4213/tvp1065
  • https://www.mathnet.ru/eng/tvp/v44/i4/p776
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :166
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024