Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 1, Pages 197–200 (Mi tvp1051)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

On a non-parametric test for homogeneity of several samples

O. M. Černomordik

Moscow
Full-text PDF (261 kB) Citations (2)
Abstract: Let $(x_{i1},\dots,x_{in_i})$, $i=\overline{1,m}$ be independent samples of sizes $n_1,\dots,n_m$ from continuous distribution functions $F_1(x),\dots,F_m(x)$. For testing the hypothesis $H_0$: $F_1(x)=\dots=F_m(x)$, tests based on the statistics
$$ S(n_1,\dots,n_m)=\sup_{-\infty<x<\infty}\biggl(\sum_{i=1}^m c_i\biggl[F_{n_i}(x)-\biggl(\sum_{i=1}^m c_i F_{n_i}(x)\biggr)/\sum_{i=1}^m c_i\biggr]^2\biggr)^{1/2} $$
are considered where $F_{n_1}(x),\dots,F_{n_m}(x)$ are the empirical distribution functions of the samples and $c_1,\dots,c_m$ arbitrary positive numbers. Numerical methods for calculation of exact and limiting distributions of $S(n_1,\dots,n_m)$ under $H_0$ are described.
Received: 10.10.1979
English version:
Theory of Probability and its Applications, 1980, Volume 25, Issue 1, Pages 194–197
DOI: https://doi.org/10.1137/1125024
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. M. Černomordik, “On a non-parametric test for homogeneity of several samples”, Teor. Veroyatnost. i Primenen., 25:1 (1980), 197–200; Theory Probab. Appl., 25:1 (1980), 194–197
Citation in format AMSBIB
\Bibitem{Che80}
\by O.~M.~{\v C}ernomordik
\paper On a non-parametric test for homogeneity of several
samples
\jour Teor. Veroyatnost. i Primenen.
\yr 1980
\vol 25
\issue 1
\pages 197--200
\mathnet{http://mi.mathnet.ru/tvp1051}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=560076}
\zmath{https://zbmath.org/?q=an:0467.62041|0425.62027}
\transl
\jour Theory Probab. Appl.
\yr 1980
\vol 25
\issue 1
\pages 194--197
\crossref{https://doi.org/10.1137/1125024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980LG24200024}
Linking options:
  • https://www.mathnet.ru/eng/tvp1051
  • https://www.mathnet.ru/eng/tvp/v25/i1/p197
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024