|
This article is cited in 3 scientific papers (total in 3 papers)
Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances
A. A. Borovkov Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Abstract:
Let $\zeta_1,\zeta_2,\dots$ be independent random variables,
$$
Z_n=\sum_{i=1}^n\zeta_i,\qquad \overline{Z}_n=\max_{k\leq n}Z_k,\qquad Z=\overline{Z}_\infty.
$$
It is well known that if $\zeta_i$ are identically distributed, then $Z$ is a proper random variable when ${\mathbf{E}\zeta_i=-a<0}$, and $Z=\infty$ a.s. when $a=0$. The limiting distribution for $\overline{Z}_n$
as $n\to\infty$, $a\to 0$ (in the triangular array scheme) when $\mathbf{E}\zeta_i^2<\infty$
is well studied (see, e.g., [J. F. C. Kingman, J. Roy. Statist. Soc. Ser. B, 24 (1962), pp. 383–392],
[Yu. V. Prokhorov, Litov. Math. Sb., 3 (1963), pp. 199–204 (in Russian)], and [A. A. Borovkov, Stochastic Process in Queueing Theory, Springer-Verlag, New York, 1976]).
In the present paper, we study the limiting distribution for $\overline{Z}_n$ as $\mathbf{E}\zeta_i\to 0$, $n\to\infty$, in the case when $\mathbf{E}\zeta_i^2=\infty$ and the summands $\zeta_i$ are nonidentically distributed.
Keywords:
random walks, maxima of partial sums, transient phenomena, convergence to stable processes, nonidentically distributed summands, infinite variance.
Received: 16.09.2004
Citation:
A. A. Borovkov, “Transient phenomena for random walks with nonidential jumps having nonidetically infinite variances”, Teor. Veroyatnost. i Primenen., 50:2 (2005), 224–240; Theory Probab. Appl., 50:2 (2006), 199–213
Linking options:
https://www.mathnet.ru/eng/tvp105https://doi.org/10.4213/tvp105 https://www.mathnet.ru/eng/tvp/v50/i2/p224
|
Statistics & downloads: |
Abstract page: | 458 | Full-text PDF : | 174 | References: | 106 |
|