|
Teoriya Veroyatnostei i ee Primeneniya, 1980, Volume 25, Issue 1, Pages 178–183
(Mi tvp1045)
|
|
|
|
This article is cited in 15 scientific papers (total in 15 papers)
Short Communications
Inequalities for the concentration function
A. L. Mirošnikov, B. A. Rogozin Novosibirsk
Abstract:
Let $\xi_1,\dots,\xi_n$ be independent random variables, $S_n=\xi_1+\dots+\xi_n$. The concentration function $Q(\xi,\lambda)$ of a random variable $\xi$ is defined by
$$
Q(\xi,\lambda)=\sup_x\,\mathbf P\{x\le\xi\le x+\lambda\},\qquad \lambda>0.
$$
We prove, that there exists a universal constant $C<\infty$ such that for any $n$ and arbitrary
$\lambda_1,\dots,\lambda_n\in(0,2L]$
$$
Q(S_n,L)\le CL\biggl( \sum_{k=1}^n\mathbf{M}\biggl(|\xi_k^s|\wedge\frac{\lambda_k}2\biggr)^2Q^{-2}(\xi_k,\lambda_k)\biggr)^{-1/2},
$$
where $\xi^s_k$ t is the symmetrization of $\xi_k$ and $a\wedge b=\min (a,b)$.
Received: 19.12.1978
Citation:
A. L. Mirošnikov, B. A. Rogozin, “Inequalities for the concentration function”, Teor. Veroyatnost. i Primenen., 25:1 (1980), 178–183; Theory Probab. Appl., 25:1 (1980), 176–180
Linking options:
https://www.mathnet.ru/eng/tvp1045 https://www.mathnet.ru/eng/tvp/v25/i1/p178
|
|