Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1999, Volume 44, Issue 4, Pages 705–737
DOI: https://doi.org/10.4213/tvp1030
(Mi tvp1030)
 

This article is cited in 6 scientific papers (total in 7 papers)

Diffusion approximation and optimal stochastic control

R. Liptserab, W. J. Runggaldierc, M. I. Taksard

a Institute for Information Transmission Problems, Russian Academy of Sciences
b Department of Electrical Engineering-Systems, Tel Aviv University, Israel
c Dipartimento di Matematica Pura е Applicata, Universita di Padova, Italy
d Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, USA
Abstract: In this paper a stochastic control model is studied that admits a diffusion approximation. In the prelimit model the disturbances are given by noise processes of various types: additive stationary noise, rapidly oscillating processes, and discontinuous processes with large intensity for jumps of small size. We show that a feedback control that satisfies a Lipschitz condition and is $\delta$-optimal for the limit model remains $\delta$-optimal also in the prelimit model. The method of proof uses the technique of weak convergence of stochastic processes. The result that is obtained extends a previous work by the authors, where the limit model is deterministic.
Keywords: stochastic control, stochastic differential equations, weak convergence, asymptotic optimality.
Received: 12.01.1998
English version:
Theory of Probability and its Applications, 2000, Volume 44, Issue 4, Pages 669–698
DOI: https://doi.org/10.1137/S0040585X97977860
Bibliographic databases:
Language: Russian
Citation: R. Liptser, W. J. Runggaldier, M. I. Taksar, “Diffusion approximation and optimal stochastic control”, Teor. Veroyatnost. i Primenen., 44:4 (1999), 705–737; Theory Probab. Appl., 44:4 (2000), 669–698
Citation in format AMSBIB
\Bibitem{LipRunTak99}
\by R.~Liptser, W.~J.~Runggaldier, M.~I.~Taksar
\paper Diffusion approximation and optimal stochastic control
\jour Teor. Veroyatnost. i Primenen.
\yr 1999
\vol 44
\issue 4
\pages 705--737
\mathnet{http://mi.mathnet.ru/tvp1030}
\crossref{https://doi.org/10.4213/tvp1030}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1811129}
\zmath{https://zbmath.org/?q=an:0974.60066}
\transl
\jour Theory Probab. Appl.
\yr 2000
\vol 44
\issue 4
\pages 669--698
\crossref{https://doi.org/10.1137/S0040585X97977860}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000165796900003}
Linking options:
  • https://www.mathnet.ru/eng/tvp1030
  • https://doi.org/10.4213/tvp1030
  • https://www.mathnet.ru/eng/tvp/v44/i4/p705
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:401
    Full-text PDF :169
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024