Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 3, Pages 612–622
DOI: https://doi.org/10.4213/tvp103
(Mi tvp103)
 

This article is cited in 6 scientific papers (total in 6 papers)

Short Communications

A remark on a large deviation theorem for Markov chain with a finite number of states

Z. Szewczak

Nikolaus Copernicus University
References:
Abstract: We consider the classic problem of large deviations for sums of random variables defined on the states of homogeneous Markov chain with finite phase space. The exact asymptotics for probabilities of large deviations of order $O(\sqrt n)$ is established. The proof is based on application of a local theorem of a new type.
Keywords: conjugate distribution, local theorem, spectrum perturbation, monotone $\varepsilon$-approximation.
Received: 11.10.2001
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 3, Pages 518–528
DOI: https://doi.org/10.1137/S0040585X97981962
Bibliographic databases:
Document Type: Article
Language: English
Citation: Z. Szewczak, “A remark on a large deviation theorem for Markov chain with a finite number of states”, Teor. Veroyatnost. i Primenen., 50:3 (2005), 612–622; Theory Probab. Appl., 50:3 (2006), 518–528
Citation in format AMSBIB
\Bibitem{Sze05}
\by Z.~Szewczak
\paper A remark on a large deviation theorem for Markov chain with a finite number of states
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 3
\pages 612--622
\mathnet{http://mi.mathnet.ru/tvp103}
\crossref{https://doi.org/10.4213/tvp103}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223226}
\zmath{https://zbmath.org/?q=an:1110.60019}
\elib{https://elibrary.ru/item.asp?id=9156439}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 3
\pages 518--528
\crossref{https://doi.org/10.1137/S0040585X97981962}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241047600016}
Linking options:
  • https://www.mathnet.ru/eng/tvp103
  • https://doi.org/10.4213/tvp103
  • https://www.mathnet.ru/eng/tvp/v50/i3/p612
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024