Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2005, Volume 50, Issue 3, Pages 597–604
DOI: https://doi.org/10.4213/tvp100
(Mi tvp100)
 

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

The structure of the UMVUEs from categorical data

A. Kagana, M. Konikov

a University of Maryland
Full-text PDF (791 kB) Citations (3)
References:
Abstract: Let an observation $X$ take finitely many values with probabilities $p_1(\theta),\ldots,p_N(\theta)$ depending on an abstract parameter $\theta\in\Theta$. It is proved that a statistic is a uniformly minimum variance unbiased estimator (UMVUE) if and only if it is measurable with respect to a subalgebra of the finite algebra generated by $X$. In general, this subalgebra is smaller than the minimal sufficient subalgebra for $\theta$ and is explicitly described. It is related to a special partition of a finite set of elements of an abstract linear space.
Keywords: estimation, linear space, partition, subalgebra, sufficiency.
Received: 16.03.2005
English version:
Theory of Probability and its Applications, 2006, Volume 50, Issue 3, Pages 466–473
DOI: https://doi.org/10.1137/S0040585X97981949
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Kagan, M. Konikov, “The structure of the UMVUEs from categorical data”, Teor. Veroyatnost. i Primenen., 50:3 (2005), 597–604; Theory Probab. Appl., 50:3 (2006), 466–473
Citation in format AMSBIB
\Bibitem{KagKon05}
\by A.~Kagan, M.~Konikov
\paper The structure of the UMVUEs from categorical data
\jour Teor. Veroyatnost. i Primenen.
\yr 2005
\vol 50
\issue 3
\pages 597--604
\mathnet{http://mi.mathnet.ru/tvp100}
\crossref{https://doi.org/10.4213/tvp100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2223224}
\zmath{https://zbmath.org/?q=an:1107.62022}
\elib{https://elibrary.ru/item.asp?id=9156437}
\transl
\jour Theory Probab. Appl.
\yr 2006
\vol 50
\issue 3
\pages 466--473
\crossref{https://doi.org/10.1137/S0040585X97981949}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241047600009}
Linking options:
  • https://www.mathnet.ru/eng/tvp100
  • https://doi.org/10.4213/tvp100
  • https://www.mathnet.ru/eng/tvp/v50/i3/p597
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :175
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024