|
This article is cited in 8 scientific papers (total in 8 papers)
Independent linear statistics on the two-dimensional torus
M. V. Mironyuk, G. M. Feldman B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine
Abstract:
Let $X=\mathbf T^2$ be the two-dimensional torus, $\mathrm{Aut}(\mathbf T^2)$ be the group of topological automorphisms of $\mathbf T^2$, $\Gamma(\mathbf T^2)$ be the set of Gaussian distributions on $\mathbf T^2$, and $\xi_1$, $\xi_2$ be independent random variables taking on values in $\mathbf T^2$ and having distributions $\mu_j$ with the nonvanishing characteristic functions. Consider $\delta\in\mathrm{Aut}(\mathbf T^2)$ and assume that the linear forms $L_1=\xi_1+\xi_2$ and $L_2=\xi_1+\delta\xi_2$ are independent. We give the description of possible distributions $\mu_j$ depending on $\delta$. In particular we give the complete description of $\delta$ such that the independence of $L_1$ and $L_2$ implies that $\mu_1,\mu_2\in\Gamma(\mathbf T^2)$. It turned out that the corresponding Gaussian distributions are either degenerate or concentrated on shifts of the same dense in $\mathbf T^2$ one-parameter subgroup.
Keywords:
independent linear statistics, two-dimensional torus, topological automorphism.
Received: 22.11.2004 Revised: 03.08.2006
Citation:
M. V. Mironyuk, G. M. Feldman, “Independent linear statistics on the two-dimensional torus”, Teor. Veroyatnost. i Primenen., 52:1 (2007), 3–20; Theory Probab. Appl., 52:1 (2008), 78–92
Linking options:
https://www.mathnet.ru/eng/tvp1https://doi.org/10.4213/tvp1 https://www.mathnet.ru/eng/tvp/v52/i1/p3
|
Statistics & downloads: |
Abstract page: | 536 | Full-text PDF : | 154 | References: | 85 | First page: | 20 |
|