Taurida Journal of Computer Science Theory and Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Taurida Journal of Computer Science Theory and Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Taurida Journal of Computer Science Theory and Mathematics, 2020, Issue 2, Pages 76–87 (Mi tvim90)  

On isomorphism of common type $\textsf{J}$-selfadjoint dilations for linear operator with nonempty regular points set

D. V. Tretyakov

Crimea Federal University, Simferopol
Abstract: The common approach to construction of $\textsf{J}$-selfadjoint dilation for linear operator with nonempty regular point set is considered in this article. Let $A$ — linear operator with nonempty regular point set $(-i\in \rho(A))$ and $Closdom(A)=\mathfrak{H}$, where $\mathfrak{H}$ — Hilbert space,
$$B_{+}:=iR_{-i}-iR_{-i}^{*}-2R_{-i}^{*}R_{-i}, \ \ B_{-}:=iR_{-i}-iR_{-i}^{*}-2R_{-i}R_{-i}^{*},$$
$Q_{\pm}:=\sqrt{|B_{\pm}|}$, $B_{\pm}=\mathcal{J}_{\pm}Q_{\pm}$ — polar decompositions of $B_{\pm}$, $\mathfrak{Q}_{\pm}=Clos(Q_{\pm}\mathfrak{H})$. Let $\mathfrak{D}_{\pm}^{(r)},~r=1,2$ — arbitrary Hilbert spaces and $F_{\pm}:dom(F_{\pm})\longrightarrow \mathfrak{D}_{\pm}^{(1)}(dom(F_{\pm})\subset\mathfrak{D}_{\pm}^{(1)}), G_{\pm}:dom(G_{\pm})\longrightarrow \mathfrak{D}_{\pm}^{(2)}dom(G_{\pm})\subset\mathfrak{D}_{\pm}^{(2)}), $ — simple maximal symmetric operators with defect numbers $(\mathfrak{q}_{-},0)$ and $(0,\mathfrak{q}_{+})$ respectively, moreover $\dim\mathfrak{Q}_{\pm}=\dim\mathfrak{N_{\pm}}^{(r)}=\mathfrak{q}_{\pm}, r=1.2$, $\Phi_{\pm}:\mathfrak{N}_{\pm}^{(1)}\rightarrow\mathfrak{Q}_{\pm}, \Psi_{\pm}:\mathfrak{N}_{\pm}^{(2)}\rightarrow\mathfrak{Q}_{\pm}$ are isometries, $V_{\pm}, W_{\pm}$ — Cayley transforms of $F_{\pm}$ and $G_{\pm}$ respectively. Let $\langle \mathcal{H}_{\pm}^{(r)},\Gamma_{\pm}^{(r)}\rangle$ are the spaces of boundary values of operators $F_{\pm}^{*}$ and $G_{\pm}^{*}$ i.e.:
$a_{F_{\pm}})~\forall f_{1},g_{1}\in dom(F_{\pm}^{*}) \ (F_{\pm}^{*}f_{1},g_{1})_{\mathfrak{D}_{\pm}^{1}}-(f_{1},F_{\pm}^{*}g_{1})_{\mathfrak{D}_{\pm}^{1}}=\mp i(\Gamma_{\pm}^{(1)}f_{1},\Gamma_{\pm}^{(1)}g_{1})_{\mathcal{H}_{\pm}^{(1)}};$
$b_{F_{\pm}})dom(F_{\pm}^{*})\ni f_{1}\mapsto \Gamma_{\pm}^{(1)}f_{1}\in\mathcal{H}_{\pm}^{(1)}$ are surjective.
$a_{G_{\pm}})~\forall f_{2},g_{2}\in dom(G_{\pm}^{*}) \ (G_{\pm}^{*}f_{2},g_{2})_{\mathfrak{D}_{\pm}^{(2)}}-(f_{2},G_{\pm}^{*}g_{2})_{\mathfrak{D}_{\pm}^{(2)}}=\mp i(\Gamma_{\pm}^{(2)}f_{2},\Gamma_{\pm}^{(2)}g_{2})_{\mathcal{H}_{\pm}^{(2)}};$
$b_{G_{\pm}})$ the transformations dom$(G_{\pm}^{*})\ni f_{2}\mapsto \Gamma_{\pm}^{2}f_{2}\in\mathcal{H}_{\pm}^{(2)}$ are surjective.
Consider the Hilbert spaces $\mathbb{H}^{(r)}=\mathfrak{D}_{-}^{(r)}\oplus\mathfrak{H}\oplus\mathfrak{D}_{+}^{(r)}$. Define in this spaces indefinite metrics $\textsf{J}^{(r)}=J_{-}^{(r)}\oplus I\oplus J_{+}^{(r)}$ and selfadjoint dilations of operator $A$ $\textsf{S}$:
$$\forall \ h_{\pm}^{(1)}=\sum\limits_{k=0}^{\infty}V_{\pm}^{k}n^{\pm}_{k}\in \mathfrak{D}_{\pm}^{(1)}, \ n^{\pm}_{k}\in\mathfrak{N}_{\pm}^{(1)}, \ J_{\pm}^{(1)}\left(\sum\limits_{k=0}^{\infty}V_{\pm}^{k}n^{\pm}_{k}\right):= \sum\limits_{k=0}^{\infty}V_{\pm}^{k}\Phi_{\pm}^{-1}\mathcal{J}_{\pm}^{(1)}\Phi_{\pm}n^{\pm}_{k}.$$
Analogously defined operator $\textsf{J}^{(2)}$. The vector $\textsf{h}_{1}=(h_{-}^{(1)},h_{0},h_{+}^{(1)})^{T} \in dom(\textsf{S}_{1})$ iff
  • $h_{\pm}^{(1)}\in dom(F^{*}_{\pm});$
  • $\varphi^{(1)}=h_{0}+Q_{-}\Phi_{-}\Gamma_{-}^{(1)}h_{-}^{(1)}\in dom(A);$
  • $\Phi_{+}\Gamma_{+}^{(1)}h_{+}^{(1)}=T^{*}\Phi_{-}\Gamma_{-}^{(1)}h_{-}^{(1)} +i\mathcal{J}_{+}Q_{+}(A+i)\varphi^{(1)},$ where $T^{*}=I+2iR_{-i}^{*}$.
If this conditions are fulfil, that for all $\textsf{h}_{1}=(h_{-}^{(1)},h_{0},h_{+}^{(1)})^{T}\in dom(\textsf{S}_{1})$
$$\textsf{S}_{1}\textsf{h}_{1}=\textsf{S}_{1}(h_{-}^{(1)},h_{0},h_{+}^{(1)})^{T}:= (F^{*}_{-}h_{-}^{(1)},~~-ih_{0}+(A+i)\varphi^{(1)},~~F^{*}_{+}h_{+}^{(1)})^{T}.$$
Analogously defined operator $\textsf{S}_{2}$.
Definition. Let $L_{1}$ and $L_{2}$ are $J_{1}$-selfadjoint and $J_{2}$-selfadjoint dilations of operator $A$. $L_{1}$ and $L_{2}$ acting in Hilbert spaces $\mathscr{H}_{1}$ and $\mathscr{H}_{2}$ respectively and operator $A$ is density defined in Hilbert space $\mathfrak{H}\subset\mathscr{H}_{r},~r=1,2$. Operators $L_{1}$ and $L_{2}$ are called isomorphic if exist unitary operator $U:\mathscr{H}_{1}\rightarrow \mathscr{H}_{2}$ that:
  • $Uh=h~~\forall h\in \mathfrak{H}$;
  • $UL_{1}\subseteq L_{2}U$;
  • $\forall~ \textsf{h}_{1}\in \mathscr{H}_{1}:~~UJ_{1}\textsf{h}_{1}=J_{2}U\textsf{h}_{1}$.
Theorem. Operators $\textsf{S}_{1}$ and $\textsf{S}_{2}$ are isomorphic. Some theorem's corollaries are proved.
Keywords: $\textsf{J}$-selfadjoint dilation, isomorphism of $\textsf{J}$-selfadjoint dilation, maximal closed symmetric operator, defect subspaces.
Document Type: Article
UDC: 517.432
MSC: 46C20; 47B50
Language: Russian
Citation: D. V. Tretyakov, “On isomorphism of common type $\textsf{J}$-selfadjoint dilations for linear operator with nonempty regular points set”, Taurida Journal of Computer Science Theory and Mathematics, 2020, no. 2, 76–87
Citation in format AMSBIB
\Bibitem{Tre20}
\by D.~V.~Tretyakov
\paper On isomorphism of common type $\textsf{J}$-selfadjoint dilations for linear operator with nonempty regular points set
\jour Taurida Journal of Computer Science Theory and Mathematics
\yr 2020
\issue 2
\pages 76--87
\mathnet{http://mi.mathnet.ru/tvim90}
Linking options:
  • https://www.mathnet.ru/eng/tvim90
  • https://www.mathnet.ru/eng/tvim/y2020/i2/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Taurida Journal of Computer Science Theory and Mathematics
    Statistics & downloads:
    Abstract page:36
    Full-text PDF :7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024