Taurida Journal of Computer Science Theory and Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Taurida Journal of Computer Science Theory and Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Taurida Journal of Computer Science Theory and Mathematics, 2019, Issue 3, Pages 82–97 (Mi tvim74)  

Mixed boundary value transmission problems for the linear theory of elasticity

K. A. Koval

Moscow State Institute of International Relations (University) of the Ministry for Foreign Affairs of Russia
Abstract: In previous works, the author studied the general approach to solving mixed boundary, spectral, and initial-boundary transmission problems. In this paper, this approach is applied to the mixed boundary transmission problem of the linear theory of elasticity. On the basis of the corresponding Green's formulas, the solution of the problem can be represented as the sum of the solutions of auxiliary problems. Let us consider an elastic body consisting of two joined regions $\Omega_1$ and $\Omega_2$ from $\mathbb{R}^m$. Let its outer boundaries be Lipschitz $(\Gamma_{11}\cup\Gamma_{22})\cup\partial \Gamma_{11} =\Gamma = \partial\Omega$, moreover, the contour $\partial \Gamma_{11}$ is also Lipschitz. We suppose that the interface $\Gamma_{12} = \Gamma_{21}$ is Lipschitz. We study a mixed boundary value problem of the linear theory of elasticity with nonhomogeneous equations and nonhomogeneous conditions at the boundary:
\begin{equation}\begin{matrix} L_1\vec{v}_1 := -[\mu_1 \Delta v + (\lambda_1 + \mu_1)\nabla \textrm{div} \vec{v}_1] = \vec{f}_1(x) (\text{в}\;\Omega_1),\\ L_2\vec{v}_2 := -[\mu_2 \Delta v + (\lambda_2 + \mu_2)\nabla \textrm{div} \vec{v}_2] = \vec{f}_2(x) (\text{в}\;\Omega_2); \end{matrix}\end{equation}

\begin{equation} \gamma_{11}\vec{v}_1 = \vec{\varphi}_1\;(\text{на}\;\Gamma_{11}),\;\;\;\gamma_{22}\vec{v}_2 = \vec{\varphi}_2\;(\text{на}\;\Gamma_{22}); \end{equation}

\begin{equation} \gamma_{21}\vec{v}_1 - \gamma_{12}\vec{v}_2 = \vec{\varphi}_{21},\;\;\;P_{21}\vec{v}_1 + P_{12}\vec{v}_2 = \vec{\psi}_{21}\;(\text{на}\;\Gamma_{12} = \Gamma_{21}), \end{equation}

$$P_{21}\vec{v}_1 := \sum_{j, k = 1}^3 (\mu_1\tau_{jk}(\vec{v}_1) + \lambda_1 \delta_{jk}\textrm{div}\vec{v}_1) \cos(\vec{v}_1, \vec{e}_j)\vec{e}_j,$$

$$P_{12}\vec{v}_2 := \sum_{j, k = 1}^3 (\mu_2\tau_{jk}(\vec{v}_2) + \lambda_2 \delta_{jk}\textrm{div}\vec{v}_2) \cos(\vec{v}_2, \vec{e}_j)\vec{e}_j.$$
On the basis of the corresponding Green's formulas
\begin{equation} (\vec{\eta}, \vec{v})_{\overrightarrow{H}^1(\Omega)} = \langle\vec{\eta}, L\vec{v}\rangle_{\overrightarrow{L}_2(\Omega)} + \sum_{k=1}^l\langle\gamma_k\vec{\eta}, P_k\vec{v}\rangle_{\overrightarrow{L}_2(\Gamma_k)},\;\;\;\forall \vec{\eta}, \vec{v} \in \widehat{\overrightarrow{H}}^1(\Omega), \end{equation}

$$\gamma_k\vec{\eta} = \vec{\eta}|_{\Gamma_k} \in \widetilde{\overrightarrow{H}}^{1/2}(\Gamma),\;\;P_k\vec{v} := (P\vec{v})|_{\Gamma_k} \in \overrightarrow{H}^{-1/2}(\Gamma),\;k=1,2;$$

\begin{equation} (\vec{\eta}, \vec{v})_{\overrightarrow{H}^1(\Omega)} = \langle\vec{\eta}, L\vec{v}\rangle_{\overrightarrow{L}_2(\Omega)} + \sum_{k=1}^l\langle\gamma_k\vec{\eta}, P_k\vec{v}\rangle_{\overrightarrow{L}_2(\Gamma_k)},\;\;\;\forall \vec{\eta}, \vec{v} \in \check{\overrightarrow{H}}^1_{\Gamma_1}(\Omega), \end{equation}

$$\gamma_k\vec{\eta} = \vec{\eta}|_{\Gamma_k} \in \overrightarrow{H}^{1/2}(\Gamma),\;\;P_k\vec{v} := (P\vec{v})|_{\Gamma_k} \in \widetilde{\overrightarrow{H}}^{-1/2}(\Gamma),\;k=1,2,$$
the solution of the problem can be represented as the sum of the solutions of auxiliary problems. The traces $\gamma \vec{v} \in \overrightarrow{H}^{1/2}(\Gamma)$ have restrictions on $\Gamma_k$, that can be continued by zero in the class of $\overrightarrow{H}^{1/2}(\Gamma)$. Wherein $\vec{v}$ belong to the space $\widehat{\overrightarrow{H}}^1_{\Gamma_1}(\Omega)$. Functions $P_k\vec{v}$ in the second formula can be continued by zero on $\Gamma$ in the class of $\overrightarrow{H}^{-1/2}(\Gamma)$. Wherein $\vec{v}$ belong to the space $\check{\overrightarrow{H}}^1_{\Gamma_1}(\Omega)$, that is, the space of functions whose $P_k\vec{v}$ extendible by zero. For the four auxiliary problems, we find weak solutions using Green's formulas. Original problem (1)–(3) is the sum of the auxiliary solutions.
Keywords: Green's formula, transmission problem, weak solution, Lipschitz boundaries, theory of elasticity.
Document Type: Article
UDC: 517.28, 517.984.46, 517.91
Language: Russian
Citation: K. A. Koval, “Mixed boundary value transmission problems for the linear theory of elasticity”, Taurida Journal of Computer Science Theory and Mathematics, 2019, no. 3, 82–97
Citation in format AMSBIB
\Bibitem{1}
\by K. A. Koval
\paper Mixed boundary value transmission problems for the linear theory of elasticity
\jour Taurida Journal of Computer Science Theory and Mathematics
\yr 2019
\issue 3
\pages 82--97
\mathnet{http://mi.mathnet.ru/tvim74}
Linking options:
  • https://www.mathnet.ru/eng/tvim74
  • https://www.mathnet.ru/eng/tvim/y2019/i3/p82
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Taurida Journal of Computer Science Theory and Mathematics
    Statistics & downloads:
    Abstract page:30
    Full-text PDF :12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024