Taurida Journal of Computer Science Theory and Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Taurida Journal of Computer Science Theory and Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Taurida Journal of Computer Science Theory and Mathematics, 2019, Issue 3, Pages 7–22 (Mi tvim68)  

The approximation of indefinite Schur's functions

E. N. Andreishcheva

Black Sea Higher Naval School
Abstract: In the paper by M. G. Krein and H. Langer [18] researched the questions about aproximations of Nevanlinna functions. Our purpose is to get such result for Schur functions. A function $s(\lambda)$ is called a generalized Schur function if it is meromorphic in the open unit disk and the kernel $\displaystyle{K_{s}(\lambda,\mu)=\frac{1-s(\lambda)\overline{s(\mu)}}{1-\lambda\overline{\mu}}}$ has finite number of negative squares. A set of all such functions forms the generalized Schur class.
As it is known, Schur function admits a unitary realization $ s(\lambda)=s(0)+\lambda [(I-\lambda T)^{-1}u,v]$ or, in other words, it is a characteristic function for some unitary colligation $V$:
$$ V=\begin{bmatrix} T&u\\ \\ [\cdot,v]&s(0) \end{bmatrix}:\begin{pmatrix} \Pi_{\varkappa}\\ \\ \mathbb{C} \end{pmatrix}\rightarrow \begin{pmatrix} \Pi_{\varkappa}\\ \\ \mathbb{C} \end{pmatrix},$$

Here $\Pi_{\varkappa}$ is a Pontryagin space with indefinite inner product $[\cdot,\cdot]$, $T$ is a contractive operator in $\Pi_{\varkappa},$ and $u, v\in\Pi_{\varkappa}.$ Note that the unitary colligation must be chosen minimal what means that $\Pi_{\varkappa}=\overline{span} \{T^{n}u,(T^{c})^{m}v:n,m=0,1,2,\ldots\},$ where $T^{c}$ is $\pi_{\varkappa}$-adjoint with $T$. Let $T$ be a contractive operator in $\Pi_{\varkappa}.$ Then the element $u\in\Pi_{\varkappa}$ is called generating for operator $T$ if
$$ \Pi_{\varkappa}=\overline{span} \displaystyle{\{(I-\lambda T)^{-1}u,~~\lambda\in \mathbb{D},~~\frac{1}{\lambda}\notin\sigma_{p}(T)\}}.$$

By $W_{\theta}$ we denote a set of all $\beta\in \mathbb{C_{-}}$ such that $\displaystyle{|\arg\beta+\frac{\pi}{2}|\leqslant\theta},$ where $\displaystyle{0\leqslant\theta<\frac{\pi}{2}}.$
By $\Lambda_{\theta}$ denote a set of all $\lambda\in\mathbb{D}$, where $\mathbb{D}=\{\xi:|\xi|<1\}$ such that
$$\lambda=(\alpha-i)(\alpha+i)^{-1},~~~-\alpha\in W_{\theta}.$$
The main result of this research is researched the question of the representation generalized Schur function in the neighborhood of the unit.
Let $s(\lambda)=\lambda^{k}s_{k}(\lambda),~s_{k}(0)\neq 0$, $k\leqslant n.$ Then we have assertions
  • $s\in S_{\varkappa}$, where $S_{\varkappa}$ is a generalized Schur class;
  • for some integer $n > 0$ there exist $2n$ numbers $c_{1},c_{2},\ldots,c_{2n}$ such that the following equality is true: $ \displaystyle{s(\lambda)=1-\sum_{\nu=1}^{2n}{c_{\nu}(\lambda-1)^{\nu}}+ O((\lambda-1)^{2n+1}),~~\lambda\rightarrow1,~\lambda\in\Lambda_{\theta}} $
if and only if there exist a Pontryagin space $\Pi_{\varkappa}$ , a contractive operator $T$ in $\Pi_{\varkappa}$, and a generative element $u\in dom(I-T)^{-(n+1)}$ for operator $T$ such that:
$$ s(\lambda)=\lambda^{k}- \frac{1}{\overline{s_{k}(0)}}\lambda^{k}(\lambda-1)[(I-\lambda T)^{-1}(I-T)^{-1}T^{k+1}u,T^{k}u],~\\ \lambda\in \mathbb{D},~ \frac{1}{\lambda}\notin\sigma_{p}(T)$$

In this case we can express $c_{\nu}$ in such form:
$$ c_{\nu}= \left\{
\begin{array}{l}\displaystyle{ \frac{1}{\overline{s_{k}(0)}}} \sum\limits_{i=1}^{\nu}C_{k-i}^{\nu-i}[(I-T)^{-(i +1)}T^{k+1}u,T^{k}u]-C_{k}^{\nu},~ 1\leqslant\nu< k+1; \\ \displaystyle{\frac{1}{\overline{s_{k}(0)}}[(I-T)^{-(\nu+1)}T^{\nu}u,T^{k}u]},~~ k+1\leqslant\nu\leqslant n;\\ \displaystyle{\frac{1}{\overline{s_{k}(0)}}[(I-T)^{-(n+1)}T^{n}u,(I-T^{c})^{-(\nu-n)}T^{c(\nu-n)}T^{k}u]},\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n+1\leqslant\nu\leqslant 2n. \end{array}
\right. $$
Keywords: Schur function, approximation, contraction, kernel, Pontryagin space, Cayley-Neumann transformation, indefinite metric, unitary realization, operator.
Document Type: Article
UDC: 517.58
MSC: 47A58
Language: Russian
Citation: E. N. Andreishcheva, “The approximation of indefinite Schur's functions”, Taurida Journal of Computer Science Theory and Mathematics, 2019, no. 3, 7–22
Citation in format AMSBIB
\Bibitem{And19}
\by E.~N.~Andreishcheva
\paper The approximation of indefinite Schur's functions
\jour Taurida Journal of Computer Science Theory and Mathematics
\yr 2019
\issue 3
\pages 7--22
\mathnet{http://mi.mathnet.ru/tvim68}
Linking options:
  • https://www.mathnet.ru/eng/tvim68
  • https://www.mathnet.ru/eng/tvim/y2019/i3/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Taurida Journal of Computer Science Theory and Mathematics
    Statistics & downloads:
    Abstract page:33
    Full-text PDF :10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024