Trudy Seminara imeni I. G. Petrovskogo
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Semim. im. I. G. Petrovskogo:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Seminara imeni I. G. Petrovskogo, 2016, Issue 31, Pages 220–230 (Mi tsp96)  

Two-sided semi-local smoothing splines

D. A. Silaev, Zh. G. Ingtem, A. A. Filippov
References:
Abstract: A semi-local smoothing spline of degree $n$ and class $C^p$ is a function defined on an interval, having $p$ continuous derivatives on that interval, and coinciding with a polynomial of degree $n$ on the subintervals forming its partition. The domain of each polynomial is a subinterval on which $m+1$ values of the approximated function are given, but in order to construct the polynomial, it is necessary to know $M\geqslant m+1$ values ($m$ and $M$ are determined by the class and the degree of the spline). The additional values can be borrowed from the adjacent subintervals. When constructing an $S$-spline in the periodic case, the problem of additional values is solved on the basis of periodicity, but in the nonperiodic case, one is expected to define the lacking values of a function beyond the domain. The present paper is aimed at nonperiodic two-sided $S$-splines whose construction does not require additional data.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 234, Issue 4, Pages 523–530
DOI: https://doi.org/10.1007/s10958-018-4026-3
Bibliographic databases:
Document Type: Article
UDC: 519.6+517.9
Language: Russian
Citation: D. A. Silaev, Zh. G. Ingtem, A. A. Filippov, “Two-sided semi-local smoothing splines”, Tr. Semim. im. I. G. Petrovskogo, 31, 2016, 220–230; J. Math. Sci. (N. Y.), 234:4 (2018), 523–530
Citation in format AMSBIB
\Bibitem{SilIngFil16}
\by D.~A.~Silaev, Zh.~G.~Ingtem, A.~A.~Filippov
\paper Two-sided semi-local smoothing splines
\serial Tr. Semim. im. I.~G.~Petrovskogo
\yr 2016
\vol 31
\pages 220--230
\mathnet{http://mi.mathnet.ru/tsp96}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2018
\vol 234
\issue 4
\pages 523--530
\crossref{https://doi.org/10.1007/s10958-018-4026-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052859217}
Linking options:
  • https://www.mathnet.ru/eng/tsp96
  • https://www.mathnet.ru/eng/tsp/v31/p220
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024