|
Trudy Seminara imeni I. G. Petrovskogo, 2016, Issue 31, Pages 63–86
(Mi tsp90)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Maximum principle for nonlinear parabolic equations
A. A. Kon'kov
Abstract:
A maximum principle is obtained for solutions of parabolic equations of the form
$$ {\mathcal L} u - u_t = f (x, t, u, D u), $$ where $$ {\mathcal L} u = \sum_{i,j=1}^n a_{ij} (x, t, u) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^n b_i (x, t, u) \frac{\partial u}{\partial x_i}. $$
Citation:
A. A. Kon'kov, “Maximum principle for nonlinear parabolic equations”, Tr. Semim. im. I. G. Petrovskogo, 31, 2016, 63–86; J. Math. Sci. (N. Y.), 234:4 (2018), 423–439
Linking options:
https://www.mathnet.ru/eng/tsp90 https://www.mathnet.ru/eng/tsp/v31/p63
|
Statistics & downloads: |
Abstract page: | 209 | Full-text PDF : | 58 | References: | 41 |
|