Trudy Seminara imeni I. G. Petrovskogo
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Semim. im. I. G. Petrovskogo:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Seminara imeni I. G. Petrovskogo, 2014, Issue 30, Pages 351–352 (Mi tsp85)  

Central exponent of a system with unbounded coefficients

K. E. Shiryaev
References:
Abstract: It is shown, by means of an example, that the central exponent of a linear system with unbounded coefficients (in contrast to systems with bounded coefficients) does not realize the upper bound for its upper Lyapunov exponent, in general.
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 210, Issue 3, Pages 331–332
DOI: https://doi.org/10.1007/s10958-015-2568-1
Document Type: Article
UDC: 517.926.4
Language: Russian
Citation: K. E. Shiryaev, “Central exponent of a system with unbounded coefficients”, Tr. Semim. im. I. G. Petrovskogo, 30, 2014, 351–352; J. Math. Sci. (N. Y.), 210:3 (2015), 331–332
Citation in format AMSBIB
\Bibitem{Shi14}
\by K.~E.~Shiryaev
\paper Central exponent of a system with unbounded coefficients
\serial Tr. Semim. im. I.~G.~Petrovskogo
\yr 2014
\vol 30
\pages 351--352
\mathnet{http://mi.mathnet.ru/tsp85}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 210
\issue 3
\pages 331--332
\crossref{https://doi.org/10.1007/s10958-015-2568-1}
Linking options:
  • https://www.mathnet.ru/eng/tsp85
  • https://www.mathnet.ru/eng/tsp/v30/p351
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:74
    Full-text PDF :21
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024