Trudy Seminara imeni I. G. Petrovskogo
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Semim. im. I. G. Petrovskogo:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Seminara imeni I. G. Petrovskogo, 2014, Issue 30, Pages 145–160 (Mi tsp74)  

Lyapunov reducibility of infinitesimal perturbations of equations and systems

A. A. Erchenko
References:
Abstract: We consider two classes of infinitesimally small perturbations of a given linear differential equation with continuous, possibly unbounded, coefficients. The first class consists of its perturbations in the space of all linear systems and the second class consists of perturbations with somewhat slower decay but in a narrower space, namely the space of systems corresponding to single equations. It is shown that the values of a Lyapunov invariant functional on the first class belong to the range of the same functional on the second class. For systems with bounded coefficients, it is shown that the said sets coincide.
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 210, Issue 2, Pages 200–209
DOI: https://doi.org/10.1007/s10958-015-2557-4
Document Type: Article
UDC: 517.926.4
Language: Russian
Citation: A. A. Erchenko, “Lyapunov reducibility of infinitesimal perturbations of equations and systems”, Tr. Semim. im. I. G. Petrovskogo, 30, 2014, 145–160; J. Math. Sci. (N. Y.), 210:2 (2015), 200–209
Citation in format AMSBIB
\Bibitem{Erc14}
\by A.~A.~Erchenko
\paper Lyapunov reducibility of infinitesimal perturbations of equations and systems
\serial Tr. Semim. im. I.~G.~Petrovskogo
\yr 2014
\vol 30
\pages 145--160
\mathnet{http://mi.mathnet.ru/tsp74}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 210
\issue 2
\pages 200--209
\crossref{https://doi.org/10.1007/s10958-015-2557-4}
Linking options:
  • https://www.mathnet.ru/eng/tsp74
  • https://www.mathnet.ru/eng/tsp/v30/p145
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024