|
Trudy Seminara imeni I. G. Petrovskogo, 2019, Issue 32, Pages 220–238
(Mi tsp108)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives
A. A. Kon'kov
Abstract:
For parabolic equations of the form
$$ \frac{\partial u}{\partial t}- \sum_{i,j=1}^n a_{ij} (x, u) \frac{\partial^2 u}{\partial x_i \partial x_j} + f (x, u, D u) = 0 \ \ \text{in}\ \ {\mathbb R}_+^{n+1}, $$
where ${\mathbb R}_+^{n+1} = {\mathbb R}^n \times (0, \infty)$, $n \ge 1$, $D = (\partial / \partial x_1, \ldots, \partial / \partial x_n)$, and $f$ satisfies some constraints, we obtain conditions that ensure the convergence of any its solution to zero as $t \to \infty$.
Citation:
A. A. Kon'kov, “On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives”, Tr. Semim. im. I. G. Petrovskogo, 32, 2019, 220–238; J. Math. Sci. (N. Y.), 244:2 (2020), 254–266
Linking options:
https://www.mathnet.ru/eng/tsp108 https://www.mathnet.ru/eng/tsp/v32/p220
|
Statistics & downloads: |
Abstract page: | 90 | Full-text PDF : | 19 | References: | 11 |
|