|
Trudy Seminara imeni I. G. Petrovskogo, 2019, Issue 32, Pages 162–190
(Mi tsp106)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Estimates for the first eigenvalue of the Sturm–Liouville problem with potentials in weighted spaces
S. S. Ezhak, M. Yu. Telnova
Abstract:
We consider the Sturm–Liouville problem on the interval $[0,1]$ with the Dirichlet boundary conditions and a weighted integral condition on the potential function, which allows the potential to have singularities of different orders at the end-points. For some values of the parameters of the weight functions, estimates are obtained for the first eigenvalue of this problem, and a method is proposed for finding precise bounds for this eigenvalue in some cases.
Citation:
S. S. Ezhak, M. Yu. Telnova, “Estimates for the first eigenvalue of the Sturm–Liouville problem with potentials in weighted spaces”, Tr. Semim. im. I. G. Petrovskogo, 32, 2019, 162–190; J. Math. Sci. (N. Y.), 244:2 (2020), 216–234
Linking options:
https://www.mathnet.ru/eng/tsp106 https://www.mathnet.ru/eng/tsp/v32/p162
|
Statistics & downloads: |
Abstract page: | 154 | Full-text PDF : | 47 | References: | 27 |
|