Trudy Seminara imeni I. G. Petrovskogo
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Tr. Semim. im. I. G. Petrovskogo:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Seminara imeni I. G. Petrovskogo, 2019, Issue 32, Pages 91–110 (Mi tsp103)  

This article is cited in 14 scientific papers (total in 14 papers)

A study of operator models arising in problems of hereditary mechanics

V. V. Vlasov, N. A. Rautian
References:
Abstract: We examine integro-differential equations with unbounded operator-valued coefficients. The principal part of such an equation is an abstract hyperbolic operator perturbed by Volterra integral operators whose kernels are fractional exponential functions of the type occurring in viscoelasticity.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-6222.2018.1
Russian Science Foundation 17-11-01215
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 244, Issue 2, Pages 170–182
DOI: https://doi.org/10.1007/s10958-019-04612-3
Bibliographic databases:
Document Type: Article
UDC: 517.968.72
Language: Russian
Citation: V. V. Vlasov, N. A. Rautian, “A study of operator models arising in problems of hereditary mechanics”, Tr. Semim. im. I. G. Petrovskogo, 32, 2019, 91–110; J. Math. Sci. (N. Y.), 244:2 (2020), 170–182
Citation in format AMSBIB
\Bibitem{VlaRau19}
\by V.~V.~Vlasov, N.~A.~Rautian
\paper A study of operator models arising in problems of hereditary mechanics
\serial Tr. Semim. im. I.~G.~Petrovskogo
\yr 2019
\vol 32
\pages 91--110
\mathnet{http://mi.mathnet.ru/tsp103}
\elib{https://elibrary.ru/item.asp?id=43210963}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2020
\vol 244
\issue 2
\pages 170--182
\crossref{https://doi.org/10.1007/s10958-019-04612-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85075920713}
Linking options:
  • https://www.mathnet.ru/eng/tsp103
  • https://www.mathnet.ru/eng/tsp/v32/p91
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:196
    Full-text PDF :75
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024