Abstract:
The use of barycentriс method in problems of analysis of radiation characteristics of reflector antennas is proposed. Formalization of the problem is done in the approximation of electrodynamic theory of the mirror and the strip antennas while keeping to a solution of the system of singular integral equations. In the production of barycentriс method the authors propose to solve the generated system numerically using variation methods of Ritz and Galerkin. To improve the effectiveness of the solution in comparison with the known methods the approximation of Ritz for regions of interest (disclose customer reflectors and emitters) can be set without partitioning into elementary subdomains (finite elements). For a given approximation the initial problem is reduced to a system of linear equations. To determine the desirability of applying barycentriс method, the authors consider a sample solution for the analysis of reflector antennas when compared with existing methods that form an approximation with basis functions by splitting the conductive surface of the antenna sub-areas of simple shapes.
Keywords:
barycentric method; method of moments; singular integral equation; mirror antenna.
Bibliographic databases:
Document Type:
Article
UDC:
519.642:537.86
Language: Russian
Citation:
I. S. Polansky, Yu. S. Pehov, “Barycentric method in the solution of singular integral equations of electrodynamic theory of reflector antennas”, Tr. SPIIRAN, 54 (2017), 244–262
\Bibitem{PolPeh17}
\by I.~S.~Polansky, Yu.~S.~Pehov
\paper Barycentric method in the solution of singular integral equations of electrodynamic theory of reflector antennas
\jour Tr. SPIIRAN
\yr 2017
\vol 54
\pages 244--262
\mathnet{http://mi.mathnet.ru/trspy974}
\crossref{https://doi.org/10.15622/sp.54.11}
\elib{https://elibrary.ru/item.asp?id=30282028}
Linking options:
https://www.mathnet.ru/eng/trspy974
https://www.mathnet.ru/eng/trspy/v54/p244
This publication is cited in the following 4 articles:
I. S. Polyanskii, K. O. Loginov, “Priblizhennyi metod resheniya zadachi konformnogo otobrazheniya proizvolnogo mnogougolnika na edinichnyi krug”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:1 (2022), 107–129
A. S. Il'inskiy, I. S. Polyansky, D. E. Stepanov, “Application of the Barycentric Method to Electromagnetic Wave Diffraction on Arbitrarily Shaped Screens”, Comput Math Model, 32:1 (2021), 7
I. S. Polanskii, N. S. Arkhipov, S. Yu. Misyurin, “On solving the optimal control problem”, Autom. Remote Control, 80:1 (2019), 66–80
A. S. Il'inskii, I. S. Polyanskii, “An approximate method for determining the harmonic barycentric coordinates for arbitrary polygons”, Comput. Math. Math. Phys., 59:3 (2019), 366–383