Trudy SPIIRAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Informatics and Automation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy SPIIRAN, 2016, Issue 47, Pages 92–104
DOI: https://doi.org/10.15622/sp.47.5
(Mi trspy893)
 

This article is cited in 3 scientific papers (total in 3 papers)

Methods of Information Processing and Management

Multi-Label Classification of Text Documents using Probabilistic Topic Modeling

S. N. Karpovich

Rambler Internet Holding LLC
Full-text PDF (963 kB) Citations (3)
Abstract: In this paper, we describe an approach to multi-label classification of text documents based on probabilistic topic modeling. On the basis of SCTM-ru a topic model has been built with the help of supervised learning. A multi-label classification algorithm is presented. We propose tools for multi-label classification implementing this approach.
Keywords: multi-label classification; supervised learning; topic model; natural language processing.
Bibliographic databases:
Document Type: Article
UDC: 004.912
Language: Russian
Citation: S. N. Karpovich, “Multi-Label Classification of Text Documents using Probabilistic Topic Modeling”, Tr. SPIIRAN, 47 (2016), 92–104
Citation in format AMSBIB
\Bibitem{Kar16}
\by S.~N.~Karpovich
\paper Multi-Label Classification of Text Documents using Probabilistic Topic Modeling
\jour Tr. SPIIRAN
\yr 2016
\vol 47
\pages 92--104
\mathnet{http://mi.mathnet.ru/trspy893}
\crossref{https://doi.org/10.15622/sp.47.5}
\elib{https://elibrary.ru/item.asp?id=26498866}
Linking options:
  • https://www.mathnet.ru/eng/trspy893
  • https://www.mathnet.ru/eng/trspy/v47/p92
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Informatics and Automation
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :498
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024