Informatics and Automation
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Informatics and Automation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Informatics and Automation, 2023, Issue 22, volume 1, Pages 87–109
DOI: https://doi.org/10.15622/ia.22.1.4
(Mi trspy1232)
 

This article is cited in 2 scientific papers (total in 2 papers)

Robotics, Automation and Control Systems

Machine-synthesized control of nonlinear dynamic object based on optimal positioning of equilibrium points

E. Yu. Shmalkoab

a Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences (FRC CSC RAS)
b Bauman Moscow State Technical University (BMSTU)
Abstract: When solving an optimal control problem with both direct and indirect approaches, the main technique is to transfer the optimal control problem from the class of infinite-dimensional optimization to a finite-dimensional one. However, with all these approaches, the result is an open-loop program control that is sensitive to uncertainties, and for the implementation of which in a real object it is necessary to build a stabilization system. The introduction of the stabilization system changes the dynamics of the object, which means that the optimal control and the optimal trajectory should be calculated for the object already taking into account the stabilization system. As a result, it turns out that the initial optimal control problem is complex, and often the possibility of solving it is extremely dependent on the type of object and functionality, and if the object becomes more complex due to the introduction of a stabilization system, the complexity of the problem increases significantly and the application of classical approaches to solving the optimal control problem turns out to be time-consuming or impossible. In this paper, a synthesized optimal control method is proposed that implements the designated logic for developing optimal control systems, overcoming the computational complexity of the problem posed through the use of modern machine learning methods based on symbolic regression and evolutionary optimization algorithms. According to the approach, the object stabilization system is first built relative to some point, and then the position of this equilibrium point becomes a control parameter. Thus, it is possible to translate the infinite-dimensional optimization problem into a finite-dimensional optimization problem, namely, the optimal location of equilibrium points. The effectiveness of the approach is demonstrated by solving the problem of optimal control of a mobile robot.
Keywords: optimal control, equilibrium point, nonlinear object, machine learning, stabilization.
Received: 10.10.2022
Document Type: Article
UDC: 004.896
Language: Russian
Citation: E. Yu. Shmalko, “Machine-synthesized control of nonlinear dynamic object based on optimal positioning of equilibrium points”, Informatics and Automation, 22:1 (2023), 87–109
Citation in format AMSBIB
\Bibitem{Shm23}
\by E.~Yu.~Shmalko
\paper Machine-synthesized control of nonlinear dynamic object based on optimal positioning of equilibrium points
\jour Informatics and Automation
\yr 2023
\vol 22
\issue 1
\pages 87--109
\mathnet{http://mi.mathnet.ru/trspy1232}
\crossref{https://doi.org/10.15622/ia.22.1.4}
Linking options:
  • https://www.mathnet.ru/eng/trspy1232
  • https://www.mathnet.ru/eng/trspy/v22/i1/p87
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Informatics and Automation
    Statistics & downloads:
    Abstract page:67
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024