Trudy SPIIRAN
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Informatics and Automation:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy SPIIRAN, 2020, Issue 19, volume 4, Pages 746–773
DOI: https://doi.org/10.15622/sp.2020.19.4.2
(Mi trspy1115)
 

This article is cited in 5 scientific papers (total in 5 papers)

Robotics, Automation and Control Systems

Application of cluster analysis with fuzzy logic elements for ground environment assessment of robotic group

M. Kochetkov, D. Korolkov, V. Petrov, O. Petrov, A. Terentev, S. Simonov

Institute of Microdevices and Control Systems, National Research University of Electronic Technology (MIET)
Abstract: Emergency situations, that cause risks for human life and health, dictate elevated requirements to completeness and accuracy of the presentation of information about current ground environment. Modern robotic systems include sensors, that operate on different physical principles. This causes incrementation of information entering control system. Computing resources and technical capabilities of robotic systems are limited in range and detection probabilities of appearing objects. In case of insufficient performance of the on-board computer system and high uncertainties of ground environment, robotic systems are not able to perform without combining information from robotic group and producing a single view of ground environment. Complex information from a group of robotic systems occurs in real time and a non-deterministic environment.
To solve the problem of identifying attribute vectors related to a single object, as well as to evaluate the effectiveness of obtained solutions, is possible using known formulas of the theory of statistical hypothesis testing and probability theory only under the normal distribution law with the known mathematical expectation of an attribute vector and a correlation matrix. However, these conditions are usually not met in practice. Problems also arise when methods of nonparametric statistics are used with an unknown law of probability distribution.
The new method of identifying attribute vectors is proposed, that does not rely on a statistical approach and, therefore, does not require knowledge of the type of distribution law and the values of its parameters. Proposed method is based on the idea of combining cluster analysis and fuzzy logic, and is relatively simple to the basic methods of multidimensional nonparametric statistics.
The results of modeling information processes are presented. The advantages of proposed method are shown. The comparative values for the number of false recognitions are given. The recommendations are given for constructing fuzzy inference rules when creating an expert system knowledge base.
Keywords: fuzzy logic, attribute, target authentication, robotic system.
Received: 16.03.2020
Document Type: Article
UDC: 004.62
Language: Russian
Citation: M. Kochetkov, D. Korolkov, V. Petrov, O. Petrov, A. Terentev, S. Simonov, “Application of cluster analysis with fuzzy logic elements for ground environment assessment of robotic group”, Tr. SPIIRAN, 19:4 (2020), 746–773
Citation in format AMSBIB
\Bibitem{KocKorPet20}
\by M.~Kochetkov, D.~Korolkov, V.~Petrov, O.~Petrov, A.~Terentev, S.~Simonov
\paper Application of cluster analysis with fuzzy logic elements for ground environment assessment of robotic group
\jour Tr. SPIIRAN
\yr 2020
\vol 19
\issue 4
\pages 746--773
\mathnet{http://mi.mathnet.ru/trspy1115}
\crossref{https://doi.org/10.15622/sp.2020.19.4.2}
Linking options:
  • https://www.mathnet.ru/eng/trspy1115
  • https://www.mathnet.ru/eng/trspy/v19/i4/p746
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Informatics and Automation
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024