Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 206, Number 1, Pages 97–111
DOI: https://doi.org/10.4213/tmf9969
(Mi tmf9969)
 

This article is cited in 8 scientific papers (total in 8 papers)

Exponentially confining potential well

A. D. Alhaidari

Saudi Center for Theoretical Physics,, Jeddah, Saudi Arabia
Full-text PDF (659 kB) Citations (8)
References:
Abstract: We introduce an exponentially confining potential well that can be used as a model to describe the structure of a strongly localized system. We obtain an approximate partial solution of the Schrödinger equation with this potential well where we find the lowest energy spectrum and the corresponding wavefunctions. We use the tridiagonal representation approach as the method for obtaining the solution as a finite series of square-integrable functions written in terms of Bessel polynomials.
Keywords: exponential potential, tridiagonal representation approach, Bessel polynomial.
Received: 07.08.2020
Revised: 22.08.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 206, Issue 1, Pages 84–96
DOI: https://doi.org/10.1134/S0040577921010050
Bibliographic databases:
Document Type: Article
PACS: 03.65.Ge, 03.65.Fd, 34.80.Bm, 03.65.Ca
Language: Russian
Citation: A. D. Alhaidari, “Exponentially confining potential well”, TMF, 206:1 (2021), 97–111; Theoret. and Math. Phys., 206:1 (2021), 84–96
Citation in format AMSBIB
\Bibitem{Alh21}
\by A.~D.~Alhaidari
\paper Exponentially confining potential well
\jour TMF
\yr 2021
\vol 206
\issue 1
\pages 97--111
\mathnet{http://mi.mathnet.ru/tmf9969}
\crossref{https://doi.org/10.4213/tmf9969}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045702}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...206...84A}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 206
\issue 1
\pages 84--96
\crossref{https://doi.org/10.1134/S0040577921010050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664262800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101455017}
Linking options:
  • https://www.mathnet.ru/eng/tmf9969
  • https://doi.org/10.4213/tmf9969
  • https://www.mathnet.ru/eng/tmf/v206/i1/p97
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024