Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 206, Number 2, Pages 245–268
DOI: https://doi.org/10.4213/tmf9964
(Mi tmf9964)
 

This article is cited in 4 scientific papers (total in 4 papers)

Quasi-solid state microscopic dynamics in equilibrium classical liquids: Self-consistent relaxation theory

A. V. Mokshin, R. M. Khusnutdinoff, Ya. Z. Vilf, B. N. Galimzyanov

Kazan (Volga Region) Federal University, Kazan, Russia
Full-text PDF (941 kB) Citations (4)
References:
Abstract: In the framework of the concept of time correlation functions, we develop a self-consistent relaxation theory of the transverse collective particle dynamics in liquids. The theory agrees with well-known results in both the short-wave (free-particle dynamics) and the long-wave (hydrodynamic) limits. We obtain a general expression for the spectral density $C_{\mathrm{T}}(k,\omega)$ of the transverse particle current realized in a range of wave numbers $k$. In the domain of microscopic spatial scales comparable to the action range of effective forces of interparticle interaction, the theory reproduces a transition from a regime with typical equilibrium liquid dynamics to a regime with collective particle dynamics where properties similar to solid-state properties appear: effective shear stiffness and transverse (shear) acoustic waves. In the framework of the corresponding approximations, we obtain expressions for the spectral density of transverse particle current for all characteristic regimes in equilibrium collective dynamics. We obtain expressions for the dispersion law for transverse (shear) acoustic waves and also relations for the kinematic shear viscosity $\nu$, the transverse speed of sound $v^{({\mathrm{T}})}$, and the corresponding sound damping coefficient $\Gamma^{({\mathrm{T}})}$. We compare the theoretical results with the results of atomistic dynamics simulations of liquid lithium near the melting point.
Keywords: liquid, collective excitation, shear wave, hydrodynamics, viscosity.
Funding agency Grant number
Russian Science Foundation 19-12-00022
Russian Foundation for Basic Research 18-02-00407_а
Foundation for the Development of Theoretical Physics and Mathematics BASIS
This research was supported by a grant from the Russian Science Foundation (Project No. 19-12-00022). The part related to the development of a microscopic description was supported by the Russian Foundation for Basic Research (Grant No. 18-02-00407_a).
The research of A. V. Mokshin was supported by the Foundation for Development of Theoretical Physics and Mathematics “BAZIS.”
Received: 02.08.2020
Revised: 20.08.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 206, Issue 2, Pages 216–235
DOI: https://doi.org/10.1134/S0040577921020082
Bibliographic databases:
Document Type: Article
PACS: 05.20.-y; 02.50.-r; 05.70.-a
MSC: 82B05; 82B30; 82C03
Language: Russian
Citation: A. V. Mokshin, R. M. Khusnutdinoff, Ya. Z. Vilf, B. N. Galimzyanov, “Quasi-solid state microscopic dynamics in equilibrium classical liquids: Self-consistent relaxation theory”, TMF, 206:2 (2021), 245–268; Theoret. and Math. Phys., 206:2 (2021), 216–235
Citation in format AMSBIB
\Bibitem{MokKhuVil21}
\by A.~V.~Mokshin, R.~M.~Khusnutdinoff, Ya.~Z.~Vilf, B.~N.~Galimzyanov
\paper Quasi-solid state microscopic dynamics in equilibrium classical liquids: Self-consistent relaxation theory
\jour TMF
\yr 2021
\vol 206
\issue 2
\pages 245--268
\mathnet{http://mi.mathnet.ru/tmf9964}
\crossref{https://doi.org/10.4213/tmf9964}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4224009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...206..216M}
\elib{https://elibrary.ru/item.asp?id=47513313}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 206
\issue 2
\pages 216--235
\crossref{https://doi.org/10.1134/S0040577921020082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664263200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85116825766}
Linking options:
  • https://www.mathnet.ru/eng/tmf9964
  • https://doi.org/10.4213/tmf9964
  • https://www.mathnet.ru/eng/tmf/v206/i2/p245
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:351
    Full-text PDF :60
    References:60
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024