Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 206, Number 3, Pages 361–367
DOI: https://doi.org/10.4213/tmf9950
(Mi tmf9950)
 

This article is cited in 3 scientific papers (total in 3 papers)

Properties of solutions of two second-order differential equations with the Painlevé property

V. V. Tsegel'nik

Belorussia State University of Informatics and Radiolectronics, Minsk, Belorussia
Full-text PDF (384 kB) Citations (3)
References:
Abstract: We consider a Hamiltonian system equivalent to the Painlevé II equation with respect to one component and to the Painlevé XXXIV equation with respect to another. We obtain two Bäcklund transformations (direct and inverse) of solutions of the Painlevé XXXIV equation. Based on this, we obtain a nonlinear functional relation for solutions of the Painlevé XXXIV equation with different values of its parameter. We obtain a second-degree second-order nonlinear differential equation with an arbitrary analytic function $F(t)$ and an arbitrary parameter $\gamma$ that is a Painlevé-type equation, which for $\gamma=1$ is the canonical equation XXVII in the Ince list in the case $m=2$. We obtain a Painlevé-type equation that reduces to the abovementioned equation for $F(t)=-t$ and $\gamma=0$. We show that the direct and inverse Bäcklund transformations coincide with the pair of Bäcklund transformations for the Painlevé XXXIV equation.
Keywords: Hamiltonian system, Painlevé equation, Painlevé property, direct Bäcklund transformation, inverse Bäcklund transformation.
Received: 01.07.2020
Revised: 01.07.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 206, Issue 3, Pages 315–320
DOI: https://doi.org/10.1134/S0040577921030041
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Tsegel'nik, “Properties of solutions of two second-order differential equations with the Painlevé property”, TMF, 206:3 (2021), 361–367; Theoret. and Math. Phys., 206:3 (2021), 315–320
Citation in format AMSBIB
\Bibitem{Tse21}
\by V.~V.~Tsegel'nik
\paper Properties of solutions of two second-order differential equations with the~Painlev\'e property
\jour TMF
\yr 2021
\vol 206
\issue 3
\pages 361--367
\mathnet{http://mi.mathnet.ru/tmf9950}
\crossref{https://doi.org/10.4213/tmf9950}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4224014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...206..315T}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 206
\issue 3
\pages 315--320
\crossref{https://doi.org/10.1134/S0040577921030041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664262900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132371598}
Linking options:
  • https://www.mathnet.ru/eng/tmf9950
  • https://doi.org/10.4213/tmf9950
  • https://www.mathnet.ru/eng/tmf/v206/i3/p361
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :80
    References:48
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024