Abstract:
We consider a Hamiltonian system equivalent to the Painlevé II equation with respect to one component and to the Painlevé XXXIV equation with respect to another. We obtain two Bäcklund transformations (direct and inverse) of solutions of the Painlevé XXXIV equation. Based on this, we obtain a nonlinear functional relation for solutions of the Painlevé XXXIV equation with different values of its parameter. We obtain a second-degree second-order nonlinear differential equation with an arbitrary analytic function F(t) and an arbitrary parameter γ that is a Painlevé-type equation, which for γ=1 is the canonical equation XXVII in the Ince list in the case m=2. We obtain a Painlevé-type equation that reduces to the abovementioned equation for F(t)=−t and γ=0. We show that the direct and inverse Bäcklund transformations coincide with the pair of Bäcklund transformations for the Painlevé XXXIV equation.
Citation:
V. V. Tsegel'nik, “Properties of solutions of two second-order differential equations with the Painlevé property”, TMF, 206:3 (2021), 361–367; Theoret. and Math. Phys., 206:3 (2021), 315–320
\Bibitem{Tse21}
\by V.~V.~Tsegel'nik
\paper Properties of solutions of two second-order differential equations with the~Painlev\'e property
\jour TMF
\yr 2021
\vol 206
\issue 3
\pages 361--367
\mathnet{http://mi.mathnet.ru/tmf9950}
\crossref{https://doi.org/10.4213/tmf9950}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4224014}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...206..315T}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 206
\issue 3
\pages 315--320
\crossref{https://doi.org/10.1134/S0040577921030041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664262900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85132371598}
Linking options:
https://www.mathnet.ru/eng/tmf9950
https://doi.org/10.4213/tmf9950
https://www.mathnet.ru/eng/tmf/v206/i3/p361
This publication is cited in the following 3 articles:
V. A. Pavlenko, “Solutions of Analogs of Time-Dependent Schrödinger
Equations Corresponding to a Pair of H2+2+1
Hamiltonian Systems in the Hierarchy of Degenerations
of an Isomonodromic Garnier System”, Diff Equat, 60:1 (2024), 77
V. A Pavlenko, “REShENIYa ANALOGOV VREMENNYKh URAVNENIY ShR¨EDINGERA, SOOTVETSTVUYuShchIKh PARE GAMIL'TONOVYKh SISTEM ????2+2+1 IERARKhII VYROZhDENIY IZOMONODROMNOY SISTEMY GARN'E”, Differencialʹnye uravneniâ, 60:1 (2024), 76
V. V. Tsegel'nik, “On Bäcklund transformations for some second-order nonlinear differential equations”, Theoret. and Math. Phys., 217:2 (2023), 1755–1766