Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 1, Pages 55–67
DOI: https://doi.org/10.4213/tmf9925
(Mi tmf9925)
 

This article is cited in 6 scientific papers (total in 6 papers)

Integrable system of generalized relativistic interacting tops

I. A. Sechinab, A. V. Zotova

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Center for Advanced Studies, Skolkovo Institute of Science and Technology, Moscow, Russia
Full-text PDF (476 kB) Citations (6)
References:
Abstract: We describe a family of integrable GL(NM)GL(NM) models generalizing classical spin Ruijsenaars–Schneider systems (the case N=1N=1) on one hand and relativistic integrable tops on the GL(N)GL(N) Lie group (the case M=1M=1) on the other hand. We obtain the described models using the Lax pair with a spectral parameter and derive the equations of motion. To construct the Lax representation, we use the GL(N)GL(N) RR-matrix in the fundamental representation of GL(N)GL(N).
Keywords: elliptic integrable system, spin Ruijsenaars–Schneider model, integrable interacting tops.
Funding agency Grant number
Russian Science Foundation 19-11-00062
This research (including the results in Sec. 2) was performed at the Steklov Mathematical Institute of Russian Academy of Sciences and is supported by a grant from the Russian Science Foundation (Project No. 19-11-00062).
Received: 27.04.2020
Revised: 27.04.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 1, Pages 1291–1302
DOI: https://doi.org/10.1134/S0040577920100049
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. A. Sechin, A. V. Zotov, “Integrable system of generalized relativistic interacting tops”, TMF, 205:1 (2020), 55–67; Theoret. and Math. Phys., 205:1 (2020), 1291–1302
Citation in format AMSBIB
\Bibitem{SecZot20}
\by I.~A.~Sechin, A.~V.~Zotov
\paper Integrable system of generalized relativistic interacting tops
\jour TMF
\yr 2020
\vol 205
\issue 1
\pages 55--67
\mathnet{http://mi.mathnet.ru/tmf9925}
\crossref{https://doi.org/10.4213/tmf9925}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4156834}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1291S}
\elib{https://elibrary.ru/item.asp?id=45232835}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 1
\pages 1291--1302
\crossref{https://doi.org/10.1134/S0040577920100049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000584562700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85094116417}
Linking options:
  • https://www.mathnet.ru/eng/tmf9925
  • https://doi.org/10.4213/tmf9925
  • https://www.mathnet.ru/eng/tmf/v205/i1/p55
  • This publication is cited in the following 6 articles:
    1. Maxime Fairon, “Integrable systems on multiplicative quiver varieties from cyclic quivers”, J. Phys. A: Math. Theor., 58:4 (2025), 045202  crossref
    2. M. Matushko, A. Zotov, “Supersymmetric generalization of qq-deformed long-range spin chains of Haldane–Shastry type and trigonometric GL(N|M)GL(N|M) solution of associative Yang–Baxter equation”, Nuclear Phys. B, 1001 (2024), 116499–14  mathnet  crossref  mathscinet
    3. K. R. Atalikov, A. V. Zotov, “Higher-rank generalization of the 11-vertex rational RR-matrix: IRF–vertex relations and the associative Yang–Baxter equation”, Theoret. and Math. Phys., 216:2 (2023), 1083–1103  mathnet  crossref  crossref  mathscinet  adsnasa
    4. M. G. Matushko, A. V. Zotov, “On the RR-matrix identities related to elliptic anisotropic spin Ruijsenaars–Macdonald operators”, Theoret. and Math. Phys., 213:2 (2022), 1543–1559  mathnet  crossref  crossref  mathscinet  adsnasa
    5. A. V. Zotov, E. S. Trunina, “Lax equations for relativistic GL(NM,C) Gaudin models on elliptic curve”, J. Phys. A, 55:39 (2022), 395202–31  mathnet  crossref  mathscinet
    6. I. A. Sechin, A. V. Zotov, “Quadratic algebras based on SL(NM) elliptic quantum R-matrices”, Theoret. and Math. Phys., 208:2 (2021), 1156–1164  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :57
    References:68
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025