Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 111, Number 1, Pages 94–108
DOI: https://doi.org/10.4213/tmf992
(Mi tmf992)
 

This article is cited in 35 scientific papers (total in 35 papers)

Finiteness of discrete spectrum of three particle Schrödinger operator on the lattice

Zh. I. Abdullaev, S. N. Lakaev

A. Navoi Samarkand State University
References:
Abstract: A Hamiltonian system of three identical quantum particles on a lattice interacting via pairwise contact attracting potentials is discussed. Finiteness of three particle bound states of the three dimensional Schrödinger operator is proved under the condition that operators describing two particle subsystems do not have virtual levels. For high dimensions (ν5) the finiteness of three particle bound states is also proved under the presence of virtual levels.
Received: 07.06.1996
English version:
Theoretical and Mathematical Physics, 1997, Volume 111, Issue 1, Pages 467–479
DOI: https://doi.org/10.1007/BF02634201
Bibliographic databases:
Language: Russian
Citation: Zh. I. Abdullaev, S. N. Lakaev, “Finiteness of discrete spectrum of three particle Schrödinger operator on the lattice”, TMF, 111:1 (1997), 94–108; Theoret. and Math. Phys., 111:1 (1997), 467–479
Citation in format AMSBIB
\Bibitem{AbdLak97}
\by Zh.~I.~Abdullaev, S.~N.~Lakaev
\paper Finiteness of discrete spectrum of three particle Schr\''odinger operator on the lattice
\jour TMF
\yr 1997
\vol 111
\issue 1
\pages 94--108
\mathnet{http://mi.mathnet.ru/tmf992}
\crossref{https://doi.org/10.4213/tmf992}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1473426}
\zmath{https://zbmath.org/?q=an:0964.47505}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 111
\issue 1
\pages 467--479
\crossref{https://doi.org/10.1007/BF02634201}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XX96900007}
Linking options:
  • https://www.mathnet.ru/eng/tmf992
  • https://doi.org/10.4213/tmf992
  • https://www.mathnet.ru/eng/tmf/v111/i1/p94
  • This publication is cited in the following 35 articles:
    1. Muminov Z.E., Lakaev Sh.S., Aliev N.M., “On the Essential Spectrum of Three-Particle Discrete Schrodinger Operators With Short-Range Potentials”, Lobachevskii J. Math., 42:6, SI (2021), 1304–1316  crossref  isi
    2. S. N. Lakaev, A. T. Boltaev, “Threshold phenomena in the spectrum of the two-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 198:3 (2019), 363–375  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    3. M. E. Muminov, E. M. Shermatova, “On finiteness of discrete spectrum of three-particle Schrödinger operator on a lattice”, Russian Math. (Iz. VUZ), 60:1 (2016), 22–29  mathnet  crossref  isi
    4. Rasulov T.H., “on the Finiteness of the Discrete Spectrum of a 3 X 3 Operator Matrix”, Methods Funct. Anal. Topol., 22:1 (2016), 48–61  mathscinet  zmath  isi
    5. M. I. Muminov, A. M. Khurramov, “On compact distribution of two-particle Schrödinger operator on a lattice”, Russian Math. (Iz. VUZ), 59:6 (2015), 18–22  mathnet  crossref
    6. T. Kh. Rasulov, R. T. Mukhitdinov, “The finiteness of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, Russian Math. (Iz. VUZ), 58:1 (2014), 52–59  mathnet  crossref
    7. M. I. Muminov, A. M. Hurramov, “Spectral properties of a two-particle Hamiltonian on a lattice”, Theoret. and Math. Phys., 177:3 (2013), 1693–1705  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. Lakaev S., Darus M., Kurbanov Sh., “Puiseux Series Expansion for an Eigenvalue of the Generalized Friedrichs Model with Perturbation of Rank 1”, J. Phys. A-Math. Theor., 46:20 (2013), 205304  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus  scopus
    9. Yu. Kh. Eshkabilov, R. R. Kucharov, “Essential and discrete spectra of the three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 170:3 (2012), 341–353  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    10. I. I. Filatova, F. M. Trukhachev, N. I. Chubrik, “Study of the process of dust grain discharging in the afterglow of an RF discharge”, Plasma Phys. Rep., 37:12 (2011), 1042  crossref
    11. Rasulov T.H., “Investigations of the Essential Spectrum of a Hamiltonian in Fock Space”, Applied Mathematics & Information Sciences, 4:3 (2010), 395–412  mathscinet  isi
    12. E. Yu. Loktionov, Yu. Yu. Protasov, “A light-erosion method for high-pressure dust-gas-plasma flows generation”, Instrum Exp Tech, 53:4 (2010), 601  crossref
    13. Albeverio, S, “THE ESSENTIAL AND DISCRETE SPECTRUM OF A MODEL OPERATOR ASSOCIATED TO A SYSTEM OF THREE IDENTICAL QUANTUM PARTICLES”, Reports on Mathematical Physics, 63:3 (2009), 359  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    14. Zh. I. Abdullaev, “Finiteness of discrete spectra for nontrivial values of the full quasi-momentum in the system of three bosons on a lattice”, Russian Math. Surveys, 62:1 (2007), 175–177  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. T. H. Rasulov, “Discrete spectrum of a model operator in Fock space”, Theoret. and Math. Phys., 152:3 (2007), 1313–1321  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Albeverio, S, “On the structure of the essential spectrum for the three-particle Schrodinger operators on lattices”, Mathematische Nachrichten, 280:7 (2007), 699  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    17. A. V. Filippov, A. F. Pal', A. N. Starostin, A. S. Ivanov, “Electrostatic interaction between two macroparticles in the Poisson-Boltzmann model”, JETP Letters, 83:12 (2006), 546–552  mathnet  mathnet  crossref  isi  scopus
    18. Albeverio, S, “Schrodinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Annales Henri Poincare, 5:4 (2004), 743  crossref  mathscinet  zmath  isi
    19. Zh. I. Abdullaev, S. N. Lakaev, “Asymptotics of the Discrete Spectrum of the Three-Particle Schrödinger Difference Operator on a Lattice”, Theoret. and Math. Phys., 136:2 (2003), 1096–1109  mathnet  crossref  crossref  mathscinet  zmath  isi
    20. Albeverio, S, “On the finiteness of the discrete spectrum of four-particle lattice Schrodinger operators”, Reports on Mathematical Physics, 51:1 (2003), 43  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:509
    Full-text PDF :217
    References:60
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025